Advertisement

Journal of Electroceramics

, Volume 18, Issue 3–4, pp 251–253 | Cite as

A Piezoelectric-Metal-Cavity (PMC) actuator

  • K. H. LamEmail author
  • C. L. Sun
  • H. L. W. Chan
  • X. Z. Zhao
  • C. L. Choy
Article

Abstract

A novel piezoelectric-metal-cavity (PMC) actuator has been designed to exhibit a large flexural displacement. This PMC actuator consists of a metal ring sandwiched between two identical piezoelectric unimorphs. The radial contraction of the piezoelectric ceramic is converted into flextensional motion of the unimorph, causing a large flexural displacement in the centre part of the actuator. The metal cavity acts a function of circumferential coupling of the piezoelectric unimorphs. It was found that the effective piezoelectric charge coefficient of the PMC actuator can approach 40,000 pC/N. With its high piezoelectric and electromechanical coupling coefficients, the PMC actuator gives a static displacement 16 μm can be produced under a d.c. driving voltage of ±77 V.

Keywords

Piezoelectric Actuator Unimorph 

Notes

Acknowledgements

This work was supported by the Centre for Smart Materials of the Hong Kong Polytechnic University.

References

  1. 1.
    K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston, 1997)Google Scholar
  2. 2.
    Q.M. Wang, L.E. Cross, Appl. Phys. Lett. 72, 2238 (1998)CrossRefGoogle Scholar
  3. 3.
    Q.C. Xu, A. Dogan, J. Tressler, S. Yoshikawa, R.E. Newnham, Proceedings of IEEE Ultrasonic Symposium 2, 923 (1991)Google Scholar
  4. 4.
    V.D. Kugel, S. Chandran, L.E. Cross, Appl. Phys. Lett. 69, 2021 (1996)CrossRefGoogle Scholar
  5. 5.
    R.E. Newnham, A. Dogan, Q.C. Xu, K. Onitsuka, J. Tressler, S. Yoshikawa, Proceedings of IEEE Ultrasonic Symposium 1, 509 (1993)Google Scholar
  6. 6.
    J.F. Fernández, A. Dogan, J.T. Fielding, K. Uchino, R.E. Newnham, Sens. Actuators, A, Phys. 65, 228 (1998)CrossRefGoogle Scholar
  7. 7.
    J. Li, R. Sedaghati, J. Dargahi, D. Waechter, Mechatronics 15, 651 (2005)CrossRefGoogle Scholar
  8. 8.
    T. Usher, A. Sim, J. Appl. Physi. 98, 064102 (2005)CrossRefGoogle Scholar
  9. 9.
    K. Abe, K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 21, L408 (1982)CrossRefGoogle Scholar
  10. 10.
    P. Ochoa, M. Villegas, J.F. Fernández, Ferroelectrics 273, 315 (2002)CrossRefGoogle Scholar
  11. 11.
    IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176 (1987)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • K. H. Lam
    • 1
    Email author
  • C. L. Sun
    • 1
    • 2
  • H. L. W. Chan
    • 1
  • X. Z. Zhao
    • 2
  • C. L. Choy
    • 1
  1. 1.Department of Applied Physics and Materials Research CentreThe Hong Kong Polytechnic UniversityHunghom, KowloonChina
  2. 2.Department of PhysicsWuhan UniversityWuhanChina

Personalised recommendations