Skip to main content
Log in

Electrical properties of ultrathin HfO2 gate dielectrics on partially strain compensated SiGeC/Si heterostructures

  • Section 2: Thin Film
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Ultrathin HfO2 gate dielectrics have been deposited on strained Si0.69Ge0.3C0.01 layers by rf magnetron sputtering. The polycrystalline HfO2 film with a physical thickness of ∼6.5 nm and an amorphous interfacial layer with a physical thickness of ∼2.5 nm have been observed by high resolution transmission electron microscopy (HRTEM). The electrical properties have been studied using metal-oxide-semiconductor (MOS) structures. The fabricated MOS capacitors on Si0.69 Ge0.3C0.01 show an equivalent oxide thickness (EOT) of 2.9 nm, with a low leakage current density of ∼4.5 × 10 − 7 A/cm2 at a gate voltage of –1.0 V. The fixed oxide charge and interface state densities are calculated to be 1.9 × 1012 cm− 2 and 3.3 × 10 11 cm− 2eV−1, respectively. The temperature dependent gate leakage characteristics has been studied to establish the current transport mechanism in high-k HfO2 gate dielectric to be Poole–Frenkel one. An improvement in electrical properties of HfO2 gate dielectrics has been observed after post deposition annealing in O2 and N2 environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Yasutake et al., VLSI Tech. Dig., 84 (2004).

  2. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys., 89, 5243 (2001).

    Article  CAS  Google Scholar 

  3. R. Puthenkovilakam, M. Sawkar, and J.P. Chang, Appl. Phys. Lett., 86, 202902 (2005).

    Article  Google Scholar 

  4. J.-H. Lee, S. Maikap, D.-Y. Kim, R. Mahapatra, S.K. Ray, Y.S. No, and W.-K. Choi, Appl. Phys. Lett., 83, 779 (2003).

    Article  CAS  Google Scholar 

  5. R. Mahapatra, S. Maikap, Je-Hun Lee, G.S. Kar, A. Dhar, Doh-Y. Kim, D. Bhattacharya, and S.K. Ray, J. Vac. Sci. Technol. A, 21, 1758 (2003).

    Article  CAS  Google Scholar 

  6. S. Jeon and H. Hwang, J. Vac. Sci. Technol. A, 21, L5 (2003).

    Article  CAS  Google Scholar 

  7. C.S. Kuo, J.F. Hsu, S.W. Huang, L.S. Lee, M.J. Tsai, and J.G. Hwu, IEEE Trans. Electron Devices, 51, 854 (2004).

    Article  CAS  Google Scholar 

  8. T. Yamaguchi, R. Iijima, T. Ino, A. Nishiyama, H. Satake, and N. Fukushima, IEDM Tech. Dig., 621 (2002).

  9. Z.J. Luo, T.P. Ma, E. Cartier, M. Copel, T. Tamagawa, and B. Halpern, VLSI Tech. Dig., 135 (2001).

  10. C.S. Kang, H.J. Cho, R. Choi, Y.H. Kim, C.Y. Kang, S.J. Rhee, C.H. Choi, M.S. Akbar, and J.C. Lee, IEEE Trans. Electron Devices, 51, 220 (2004).

    Article  CAS  Google Scholar 

  11. R.E. Nieh, C.S. Kang, H.-J. Cho, K. Onishi, R. Choi, S. Krishnan, J.H. Han, Y.-H. Kim, M.S. Akbar, and J.C. Lee, IEEE Trans. Electron Devices, 50, 333 (2003).

    Article  CAS  Google Scholar 

  12. K.J. Hubbard and D.G. Schlom, J. Mater. Res., 11, 2757 (1996).

    CAS  Google Scholar 

  13. L.F. Schneemeyer, R.B. van Dover, and R.M. Fleming, Appl. Phys. Lett., 75, 1967 (1999).

    Article  CAS  Google Scholar 

  14. B.H. Lee, L. Kang, W.-J., Qi, R. Nieh, Y. Jeon, K. Onishi, and J.C. Lee, IEDM Tech. Dig., 133 (1999).

  15. I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim (1989).

  16. E.J.M. Yang, C.-L. Chang, M. Carroll, and J.C. Sturm, IEEE Trans. Electron. Dev. Lett., 20, 301 (1999).

    Article  CAS  Google Scholar 

  17. E.J. Quinones, S. John, S.K. Ray, and S.K. Banerjee, IEEE Trans. Electron. Dev., 47, 1715 (2000).

    Article  CAS  Google Scholar 

  18. M. Gluck, U. Konig, W. Winter, K. Brunner, and K. Eberl, Physica E 2, 768 (1998).

    Article  CAS  Google Scholar 

  19. T. Manku and A. Nathan, Phys. Rev. B, 41, 2912 (1990).

    Article  Google Scholar 

  20. K. Ismail, J.O. Chu, and B.S. Meyerson, Appl. Phys. Lett., 56, 3124 (1994).

    Article  Google Scholar 

  21. A. Cuadras, B. Garrido, C. Bonafos, J.R. Morante, L. Fonseca, M. Franz, and K. Pressel, Thin Solid Film, 364, 233 (2000).

    Article  CAS  Google Scholar 

  22. S. Sayan, S. Aravamudhan, B.W. Busch, W.H. Schulte, F. Cosandey, G.D. Wilk, T. Gustafsson, and E. Garfunkel, J. Vac. Sci. Technol. A, 20(2), 507 (2002).

    Article  CAS  Google Scholar 

  23. D.H. Triyoso, M. Ramon, R.I. Hegde, D. Roan, R. Garcia, J. Baker, X.-D. Wang, P. Fejes, B. White, Jr., and P.J. Tobin, J. Electrochem. Soc., 152, G203 (2005).

    Article  CAS  Google Scholar 

  24. C.G. Ahn, H.S. Kang, Y.K. Kwon, S.M. Lee, B.R. Ryum, and B.K. Kang, J. Appl. Phys., 86, 1542 (1999).

    Article  CAS  Google Scholar 

  25. H.B. Park, M. Cho, J. Park, S.W. Lee, C.S. Hwang, J.P. Kim, J.H. Lee, N.I. Lee, H.K. Kang, J.C. Lee, and S.J. Oh, J. Appl. Phys., 3641 (2003).

  26. O. Weber, F. Ducroquet, T. Ernst, F. Andrieu, J.F. Damlencourt, J.M. Hartmann, B. Guillaumot, A.M. Papon, H. Dansas, L. Brévard, A. Toffoli, P. Besson, F. Martin, Y. Morand, and S. Deleonibus, IEEE VLSI Tech. Dig., 42 (2004).

  27. M. Houssa, M. Naili, C. Zhao, H. Bender, M.M. Heyns, and A Stesmans, Semicond. Sc. Technol., 16, 31 (2001).

    Article  CAS  Google Scholar 

  28. J.J. O’Dwyer, The theory of electrical conduction and breakdown in solid dielectrics. London: Clarendon; 136 (1973).

  29. D.S. Jeong, H.B. Park, and C.S. Hwang, Appl. Phys. Lett., 86, 072903 (2005).

    Article  Google Scholar 

  30. K.J. Choi, W.C. Shin, and S.G. Yoon, J. Electrochem. Soc., 149, F18 (2002).

    Article  CAS  Google Scholar 

  31. H.D. Kim, Y. Roh, Y. Lee, J.E. Lee, D. Jung, and N.-E. Lee, J. Vac. Sci. Technol. A, 22, 1347 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahapatra, R., Maikap, S. & Ray, S.K. Electrical properties of ultrathin HfO2 gate dielectrics on partially strain compensated SiGeC/Si heterostructures. J Electroceram 16, 545–548 (2006). https://doi.org/10.1007/s10832-006-9915-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-9915-z

Keywords

Navigation