Skip to main content
Log in

Microwave dielectric properties of temperature stable Ca5A2Ti1−x Hf x O12 (A = Nb, Ta) ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Ca5A2Ti1−x Hf x O12 (A = Nb, Ta) ceramics have been prepared as single-phase materials by conventional solid-state ceramic route. Their structure and microstructure were studied by X-ray diffraction and scanning electron microscopic methods and dielectric properties were characterised in the 4–6 GHz microwave frequency range. We observed an increase in cell volume and theoretical density with compositional variations. In Ca5Nb2Ti1−x Hf x O12 ceramics the dielectric constant varied from 48 to 22 and quality factor from 26000 to 16000 GHz whereas in Ca5Ta2Ti1−x Hf x O12 the variation in dielectric constant was from 38 to 17 and quality factor from 33000 to 18000 GHz with increase in x. In both the ceramic systems the temperature coefficient of resonant frequency shifted from positive to negative values with Hf 4+ substitution for Ti4+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, Massachusetts, 1986).

    Google Scholar 

  2. L.A. Trinogga, G. Kaizhon, and J.C. Hunter, Practica Microstrip Circuit Design (Ellis, Horword, 1991).

  3. G.L. Roberts, R.J. Cava, W.F. Peck, and J.J. Krajewski, J. Mater. Res., 12, 526 (1997).

    CAS  Google Scholar 

  4. A.I. Kingon, J.P. Maria, and S.K. Streiffer, Nature, 406, 1032 (2000).

    Article  CAS  Google Scholar 

  5. M.T. Sebastian and A-K Axelsson, N Mc N Alford, Internet Data, URL: http://www.lsbu.ac.uk/dielectric-materials

  6. M.R. Varma, R. Reghunandan, and M.T. Sebastian, Jpn. J. Appl. Phys., 44, 298 (2005).

    Article  CAS  Google Scholar 

  7. K.P. Surendran, P. Mohanan, and M.T. Sebastian, J. Sol. State Chem., 177, 4031 (2004).

    Article  CAS  Google Scholar 

  8. H. Ohsato, A. Atsushi, Y.T. Takagi, S. Nishigaki, and T. Okuda, Jpn. J. Appl. Phys., 39, 6608 (2000).

    Article  Google Scholar 

  9. M.T. Sebastian, N. Santha, P.V. Bijumon, A. Axelsson, and NMcN. Alford, J. Eur. Ceram. Soc., 24, 2583 (2004).

    Article  CAS  Google Scholar 

  10. R.J. Cava, J.J. Krajewski, and R.S. Roth, Mater. Res. Bull., 34, 355 (1999).

    Article  CAS  Google Scholar 

  11. L.A. Bendersky, J.J. Krajewski, and R.J. Cava, J. Eur. Ceram. Soc., 21, 2653 (2001).

    Article  CAS  Google Scholar 

  12. L.A. Bendersky, I. Levin, R.S. Roth, and A.J. Shapiro, J. Solid State Chem., 160, 257 (2001).

    Article  CAS  Google Scholar 

  13. P.V. Bijumon, P. Mohanan, and M.T. Sebastian, Jpn. J. Appl. Phys., 41, 3384 (2002).

    Article  CAS  Google Scholar 

  14. P.V. Bijumon, P. Mohanan, and M.T. Sebastian, Mat. Lett., 57, 1380 (2003).

    Article  CAS  Google Scholar 

  15. P.V. Bijumon and M.T. Sebastian, J. Mater. Res., 19, 2922 (2004).

    Article  CAS  Google Scholar 

  16. P.V. Bijumon, A. Dias, R.L. Moreira, P. Mohanan, and M.T. Sebastian, J. Appl. Phys., 95 (2005).

  17. P.V. Bijumon and M.T. Sebastian, J. Am. Ceram. Soc., (communicated).

  18. P.V. Bijumon and M.T. Sebastian, J. Amer Cer Soc., 88, 3433(2005).

    Article  CAS  Google Scholar 

  19. P.V.Bijumon, Sreedevi. K. Menon, P. Mohanan, and M.T. Sebastian, Microwave Opt. Tech. Lett., 35, 327 (2002).

    Article  Google Scholar 

  20. P.V. Bijumon, S.K. Menon, M.N. Suma, M.T. Sebastian, and P. Mohanan, Electron. Lett., 41 (2005).

  21. S. Mridula, Sreedevi K. Menon, P. Mohanan, P.V. Bijumon, and M.T. Sebastian, Microwave Opt. Technol. Lett., 40, 316 (2004).

    Article  Google Scholar 

  22. M.N. Suma, P.V. Bijumon, M.T. Sebastian, and P. Mohanan (unpublished results).

  23. J. Krupka, K. Derzakowski, B. Riddle, and J.B. Jarvis, Meas. Sci. Technol., 9, 1751 (1998).

    Article  CAS  Google Scholar 

  24. B.W. Hakki and P.D. Coleman, IRE Trans. Microwave TheoryTech., MTT-8, 402 (1960).

    Article  Google Scholar 

  25. W.E. Courtney, IEEE Trans. Microwave Theory Tech., MTT-18, 476 (1970).

    Article  Google Scholar 

  26. H.M. Shirey, Low temperature synthesis of the microwave dielectric material Barium Magnesium Tantalate (BMT), (M. S. Thesis, University of Pittsburg 2002).

  27. R.D. Shannon, Acta Cryst., A32, 751 (1976).

    CAS  Google Scholar 

  28. R.S. Roth, J. Research of the National Bureau of Standards, 58, 75 (1957).

    CAS  Google Scholar 

  29. S.J. Penn, N.McN. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, J. Am. Ceram. Soc., 80, 1885 (1997).

    Article  CAS  Google Scholar 

  30. R.D. Shannon, J. Appl. Phys., 73, 348 (1993).

    Article  CAS  Google Scholar 

  31. S. Hirano, T. Hayashi, and A. Hattori, J. Am. Ceram. Soc., 74, 1320 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Sebastian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bijumon, P.V., Sebastian, M.T. Microwave dielectric properties of temperature stable Ca5A2Ti1−x Hf x O12 (A = Nb, Ta) ceramics. J Electroceram 16, 239–245 (2006). https://doi.org/10.1007/s10832-006-8279-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-8279-8

Keywords

Navigation