Skip to main content
Log in

Microstructure of cobalt oxide doped sintered ceria solid solutions

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The sintering of ceria solid solutions, such as Ce0.9Gd0.1O1.95 (CGO10), is strongly promoted by the addition of 1 cat% of cobalt oxide, lowering the maximum sintering temperature by 200C and triplicating the maximum densification rate. This change in sintering behavior results from cobalt ion segregated at the grain boundaries. An average cobalt ion boundary coverage is at maximum 3.0 ± 1.9 at/nm2 and is shown to depend on the cooling rate. Coverage by segregated gadolinium is also found and amounts to 13.2 ± 11.4 at/nm2 for a slowly cooled sample. From cobalt excess measured at the boundary, an estimated concentration of only 0.06 cat% of cobalt oxide is necessary to promote the sintering effect. The remaining amount of cobalt oxide is found in triple points and as particles in clusters. It is expected that the amount of cobalt oxide necessary for fast densification can be reduced with a doping process that distributes the additives more homogeneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993).

    Article  CAS  Google Scholar 

  2. M. Gödickemeier and L.J. Gauckler, J. Electrochem. Soc., 145, 414 (1998).

    Google Scholar 

  3. B.C.H. Steele, Solid State Ionics, 129, 95 (2000).

    Article  CAS  Google Scholar 

  4. L.J. Gauckler, D. Beckel, B.E. Buergler, E. Jud, U.P. Muecke, M. Prestat, J.L.M. Rupp, and J. Richter, Chimia, 58, 837 (2004).

    CAS  Google Scholar 

  5. V.V. Kharton, F.M. Figueiredo, L. Navarro, E.N. Naumovich, A.V. Kovalevsky, A.A. Yaremchenko, A.P. Viskup, A. Carneiro, F.M.B. Marques, and J.R. Frade, J. Mat. Sci., 36, 1105 (2001).

    Article  CAS  Google Scholar 

  6. D.K. Hohnke, Solid State Ionics, 5, 531 (1981).

    Article  CAS  Google Scholar 

  7. A. Overs and I. Riess, J. Am. Cer. Soc., 65, 606 (1982).

    Article  CAS  Google Scholar 

  8. J. Faber, C. Geoffroy, A. Roux, A. Sylvestre, and P. Abelard, Appl. Phys. A Mater. Sci. Proc., 49, 225 (1989).

    Article  Google Scholar 

  9. K.Q. Huang, M. Feng, and J.B. Goodenough, J. Am. Ceram. Soc., 81, 357 (1998).

    CAS  Google Scholar 

  10. S.R. Wang, T. Kobayashi, M. Dokiya, and T. Hashimoto, J. Electrochem. Soc., 147, 3606 (2000).

    Article  CAS  Google Scholar 

  11. T.S. Zhang, P. Hing, H.T. Huang, and J. Kilner, Solid State Ionics, 148, 567 (2002).

    Article  CAS  Google Scholar 

  12. C. Kleinlogel and L.J. Gauckler, Adv. Mater., 13, 1081 (2001).

    Article  CAS  Google Scholar 

  13. G.S. Lewis, A. Atkinson, and B.C.H. Steele, In Fourth European Solid Oxide Fuel Cell Forum, edited by U. Bossel (Oberrohrdorf, Switzerland, 2000), p. 773.

    Google Scholar 

  14. C. Kleinlogel and L.J. Gauckler, Solid State Ionics, 135, 567 (2000).

    Article  CAS  Google Scholar 

  15. D. Perez-Coll, P. Nunez, D. Marrero-Lopez, J.C.C. Abrantes, and J.R. Frade, J. Solid State Electrochem., 8, 644 (2004).

    CAS  Google Scholar 

  16. T.S. Zhang, P. Hing, H.T. Huang, and J. Kilner, J. Eur. Cer. Soc., 22, 27 (2002).

    Article  Google Scholar 

  17. E. Jud, C.B. Huwiler, L.J. Gauckler, In preparation (2005).

  18. G.S. Lewis, A. Atkinson, B.C.H. Steele, and J. Drennan, Solid State Ionics, 152, 567 (2002).

    Article  Google Scholar 

  19. D.P. Fagg, J.C.C. Abrantes, D. Perez-Coll, P. Nunez, V.V. Kharton, and J.R. Frade, Electrochimica Acta, 48, 1023 (2003).

    Article  CAS  Google Scholar 

  20. E. Jud and L.J. Gauckler, J. Electroceram., 15, 159 (2005).

    Article  CAS  Google Scholar 

  21. R.L. Coble, U.S. Patent, 3026210 (1962).

  22. R. Voytovych, I. MacLaren, M.A. Gulgun, R.M. Cannon, and M. Ruhle, Acta Mater., 50, 3453 (2002).

    Article  CAS  Google Scholar 

  23. M.A. Gulgun, R. Voytovych, I. Maclaren, M. Ruhle, and R.M. Cannon, Interface Science, 10, 99 (2002).

    Article  Google Scholar 

  24. R. Gerhardt, A.S. Nowick, M.E. Mochel, and I. Dumler, J. Am. Ceram. Soc., 69, 647 (1986).

    Article  CAS  Google Scholar 

  25. M. Aoki, Y.M. Chiang, I. Kosacki, I.J.R. Lee, H. Tuller, and Y.P. Liu, J. Am. Ceram. Soc., 79, 1169 (1996).

    Article  CAS  Google Scholar 

  26. M. Godickemeier, B. Michel, A. Orliukas, P. Bohac, K. Sasaki, L. Gauckler, H. Heinrich, P. Schwander, G. Kostorz, H. Hofmann, and O. Frei, J. Mat. Res., 9, 1228 (1994).

    Google Scholar 

  27. Y.L. Liu, S. Primdahl, and M. Mogensen, Solid State Ionics, 161, 1 (2003).

    Article  CAS  Google Scholar 

  28. R. Gerhardt and A.S. Nowick, J. Am. Ceram. Soc., 69, 641 (1986).

    Article  CAS  Google Scholar 

  29. T.S. Zhang, P. Hing, H.T. Huang, and J. Kilner, J. Mat. Sci., 37, 997 (2002).

    Article  CAS  Google Scholar 

  30. E. Jud, C.B. Huwiler, and L.J. Gauckler, J. Am. Cer. Soc., 88, 3013 (2005).

    CAS  Google Scholar 

  31. A. Strecker, U. Salzberger, and J. Mayer, Prakt. Metallogr., 30, 482 (1993).

    CAS  Google Scholar 

  32. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed., (Plenum Press, New York, 1989).

    Google Scholar 

  33. H. Gu, R.M. Cannon, and M. Ruhle, J. Mat. Res., 13, 376 (1998).

    CAS  Google Scholar 

  34. J.A.S. Ikeda, Y.-M. Chiang, A.J. Garratt-Reed, and J.B. Vander Sande, J. Am. Ceram. Soc., 76, 2447 (1993).

    Article  CAS  Google Scholar 

  35. Y.M. Chiang, L.A. Silverman, R.H. French, and R.M. Cannon, J. Am. Ceram. Soc., 77, 1143 (1994).

    Article  CAS  Google Scholar 

  36. J. Bruley, I. Tanaka, H.J. Kleebe, and M. Ruhle, Anal. Chim. Act., 297, 97 (1994).

    Article  CAS  Google Scholar 

  37. K. Mocala, A. Navrotsky, and D.M. Sherman, Phys. Chem. Minerals, 19, 88 (1992).

    Article  CAS  Google Scholar 

  38. E. Jud and L.J. Gauckler, J. Electroceram., 14, 247 (2005).

    Article  CAS  Google Scholar 

  39. M. Chen, B. Hallstedt, N.A. Grundy, and L.J. Gauckler, J. Am. Ceram. Soc., 86, 1567 (2003).

    CAS  Google Scholar 

  40. N.A. Grundy, private communication (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Jud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jud, E., Zhang, Z., Sigle, W. et al. Microstructure of cobalt oxide doped sintered ceria solid solutions. J Electroceram 16, 191–197 (2006). https://doi.org/10.1007/s10832-006-6258-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-6258-8

Keywords

Navigation