Skip to main content
Log in

Cuprate-ferrate compositions for temperature independent resistive oxygen sensors

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this contribution, the binary ceramic system La2CuO4-LaFeO3 is investigated for resistive oxygen sensor applications. The temperature-independent characteristics that are observed for copper contents of 30% or higher are of particular interest. In order to correlate sensor characteristics and material composition, an initial model describing the complex two-phase system is proposed. It is based on the so-called generalized effective media theory (GEMT), a useful tool for describing bi-phase composites. The fitting procedure allows to predict the actual sensor characteristics determined by the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wiedenmann, G. Hötzel, H. Neumann, J. Riegel, F. Stanglmeier, and H. Weyl, Exhaust Gas Sensors, in Automotive Electronics Handbook, 2nd edition, R. Jurgen(Ed.), Mc Graw-Hill, New York, 6.1–6.25 (1999).

    Google Scholar 

  2. A. Takami, “Development of titania heated exhaust-gas oxygen sensor,” Ceram. Bull., 67, 1956–1960 (1988).

    CAS  Google Scholar 

  3. J. Gerblinger, M. Hauser, and H. Meixner, “Electric and kinetic properties of screen-printed strontium titanate films at high temperatures,” J. Am. Ceram. Soc., 78, 1451–1456 (1995).

    Article  CAS  Google Scholar 

  4. N. Izu, W. Shin, I. Matsubara, and N. Murayama, “The effects of the particle size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film,” Sens. Actuators B, 94, 222–227 (2003).

    Article  Google Scholar 

  5. N. Izu, W. Shin, and N. Murayama, “Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder,” Sens. Actuators B, 93, 449–453 (2003).

    Article  Google Scholar 

  6. J. Gerblinger, H. Meixner, and P. Kleinschmidt, “Rapid, temperature-compensated sensor, in particular for oxygen and automobile exhaust fumes,” WO 90/03569 (1990).

  7. J. Gerblinger and H. Meixner, “Device for determining the partial pressure of gases in a gas mixture,” European Patent Application EP 563613 A2 (1993).

  8. N. Izu, W. Shin, I. Matsubara, and N. Murayama, “Small temperature-dependent resistive oxygen gas sensor using Ce0.9Y0.1O2-δ as a new temperature compensating material,” Sens. Actuators B, 101, 381–386 (2004).

    Article  Google Scholar 

  9. P. Moseley and D. Williams, “Gas sensors based on oxides of early transition metals,” Polyhedron, 8, 1615–1618 (1989).

    Article  CAS  Google Scholar 

  10. R. Moos, W. Menesklou, H. Schreiner, and K.H. Härdtl, “Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control,” Sens. Actuators B, 67, 178–183 (2000).

    Article  Google Scholar 

  11. R. Moos, F. Rettig, A. Hürland, and C. Plog, “Temperature-independent resistive oxygen exhaust gas sensors for lean-burn engines in thick-film technology,” Sens. Actuators B, 93, 42–49 (2003).

    Article  Google Scholar 

  12. R. Blase, K. Härdtl, U. Schönauer, “Oxygen Sensor based on non-doped cuprate,” United States Patent Specification, US 5,792,666 (1997).

  13. R. Blase and K. Härdtl, “Schneller Sauerstoffsensor zur Regelung von Verbrennungsvorgängen” (Fast Oxygen Sensor for Combustion Control), in: VDI-Berichte 1255, VDI-Verlag Düsseldorf, Proceedings of “Sensoren und Messysteme”, Bad Nauheim, Germany, 11–13 March 1996, 137–142 (1996).

  14. A. Krug, “(La,Sr)FeO3—Elektrische Eigenschaften und Sensoranwendungen ((La,Sr)FeO3-Electrical properties and sensor applications),” Ph.D. thesis, Universität Fridericiana Karlsruhe, Karlsruhe, Germany, (1994).

  15. R. Moos and F. Rettig, “Resistiver Sauerstoffsensor (Resistive Oxygen Sensor),” German Patent Specification, DE10114645C1 (2003).

  16. F. Rettig, R. Moos, and C. Plog, “Novel temperature independent resistive oxygen sensor without sulfur instability for combustion engine exhaust,” Sensor 2003 Proceedings, Nürnberg, Germany, 13–15 May 2003, 277–282 (2003).

  17. F. Rettig, R. Moos, and C. Plog, “Sulfur adsorber for thick-film exhaust gas sensors,” Sens. Actuators B, 93, 36–41 (2003).

    Article  Google Scholar 

  18. F. Rettig, R. Moos, and C. Plog, “Poisoning of temperature independent resistive oxygen sensors by sulfur dioxide,” J. Electroceram., 13, 733–738 (2004).

    Article  CAS  Google Scholar 

  19. K. Sahner, R. Moos, N. Izu, W. Shin, and N. Murayama, “Resistive temperature-independent oxygen sensors: a comparative study,” Sens. Actuators B, 113, 112–119 (2006).

    Article  Google Scholar 

  20. K. Sahner, R. Moos, M. Matam, J. Tunney, and M. Post, “Hydrocarbon sensing with thick and thin film p-type conducting perovskite materials,” Sens. Actuators B, 108, 102–112 (2005).

    Google Scholar 

  21. R. Landauer, Electrical Conductivity in Inhomogeneous Media(Edited by), D. T. J.C. Garland, American Institute of Physics, New York, 2–45 (1978).

    Google Scholar 

  22. D.S. McLachlan, “An equation for the conductivity of binary mixtures with anisotropic grain structures,” J. Phys. C: Solid State Phys., 20, 865–877 (1987).

    Article  Google Scholar 

  23. R.H. Cruz-Estrada and M.J. Folkes, “Structure formation and modelling of the electrical conductivity in SBS-polyaniline blends. Part II Generalized effective media theories approach, Journal of Materials Science Letters,” 21, 1431–1434 (2002).

    CAS  Google Scholar 

  24. D.S. McLachlan, “Measurement and analysis of a model dual-conductivity medium using a generalised effective-medium-theory,” J. Phys. C: Solid State Phys., 21, 1521–1532 (1988).

    Article  Google Scholar 

  25. R.H. Cruz-Estrada and M.J. Folkes, “Structure formation and modelling of the electrical conductivity in SBS-polyaniline blends. Part I Percolation theory approach,” Journal of Materials Science Letters, 21, 1427–1429 (2002).

    CAS  Google Scholar 

  26. D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham, “Electrical resistivity of composites,” J. Am. Ceram. Soc., 73, 2187–2203 (1990)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Sahner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahner, K., Straub, J. & Moos, R. Cuprate-ferrate compositions for temperature independent resistive oxygen sensors. J Electroceram 16, 179–186 (2006). https://doi.org/10.1007/s10832-006-6203-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-6203-x

Keywords

Navigation