Skip to main content

Epitaxial Pb(Zr,Ti)O3 Capacitors on Si by Liquid Delivery Metalorganic Chemical Vapor Deposition

Abstract

La0.5Sr0.5CoO3/Pb(Zr x Ti1−x)O3/La0.5Sr0.5CoO3 capacitors have been successfully fabricated by liquid delivery metalorganic chemical vapor deposition on Si wafers using SrTiO3 thin layer (20 nm) as a template. Zr(dmhd)4 in tetrahydrofuran was used as Zr precursor for compatible thermal behavior with Pb(thd)2 and Ti(OiPr)2(thd)2 precursors. The dependence of the ferroelectric film composition on the precursor mixing ratio and growth temperature has been systematically studied by Rutherford Backscattering (RBS). Ferroelectric and piezoelectric properties at the composition close to morphotropic phase boundary region (Pb(Zr0.5Ti0.5)O3) have been investigated for application in nonvolatile ferroelectric random access memories and microelectromechanical system (MEMS). These capacitors show desirable ferroelectric properties, which proves that this approach is very promising for both fundamental study and potential applications. The changes of spontaneous polarization (P s ) and piezoelectric coefficient (d33) with Ti/(Zr + Ti) ratio are also presented and compared with theoretical values.

This is a preview of subscription content, access via your institution.

References

  1. O. Auciello, J.F. Scott, and R. Ramesh, Physics Today, 22 (1998).

  2. S. Aggarwal, A.M. Dhote, H. Li, S. Ankem, and R. Ramesh, Appl. Phys. Lett., 74, 230 (1999).

    Google Scholar 

  3. H.N. Al-Sharreef, B.A. Turtle, W.L. Warren, D. Dimos, and M.V. Raymond, Appl. Phys. Lett., 68, 272 (1996).

    Google Scholar 

  4. B.T. Liu, Z. Hao, Y.F. Chen, B. Xu, H. Chen, F. Wu, and B.R. Zhao, Yu. Kislinskii, and E. Stepantsov, Appl. Phys. Lett., 74, 2044 (1999).

    Google Scholar 

  5. T. Wu, S.B. Ogale, J.E. Garrison, B. Nagaraj, Amlan Biswas, Z. Chen, R.L. Greene, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett., 86, 5998 (2001).

    Google Scholar 

  6. Ing-Shin Chen, Jeffrey F. Roeder, Dong-Joo Kim, Jon-Paul Maria, and Angus I. Kingon, J. Vac. Sci. Technol. B, 19, 1833 (2001).

    Google Scholar 

  7. S.A. Impey, Z. Huang, A. Patel, R. Beanland, N.M. Shorrocks, R. Watton, R. Watton, and R.W. Whatmore, J. Appl. Phys., 83, 2202 (1998).

    Google Scholar 

  8. T. Yamaguti, Proc. Phys. Math. Soc. Jpn., 17, 443 (1935).

    Google Scholar 

  9. R. Sato, J. Phys. Soc. Jpn., 6, 527 (1951).

    Google Scholar 

  10. M. Diara, Y. Arimoto, M. Jifuku, T. Kimura, S. Kodama, H. Yamawaki, and T. Yamaoka, J. Electrochem. Soc., 129, 2569 (1982).

    Google Scholar 

  11. U.S. Matsubara, N. Shohata, and M. Mikami, Jpn. J. Appl. Phys., Suppl., 24, 10 (1985).

    Google Scholar 

  12. R.A. McKee, F.J. Walker, and M.F. Chisholm, Phys. Rev. Lett., 81, 3014 (1998).

    Article  Google Scholar 

  13. A. Lin, X. Hong, V. Wood, A.A. Verevkin, C.H. Ahn, R.A. Mckee, F. Walker, and E.D. Specht, Appl. Phys. Lett., 78, 2034 (2001).

    Google Scholar 

  14. K. Eisenbeiser, J.M. Finder, Z. Yu, J. Ramdani, J.A. Curless, J.A. Hall-mark, R. Droopad, W.J. Ooms, L. Salem, S. Bradshaw, and C.D. Over-gaard, Appl. Phys. Lett., 76, 1324 (2000).

    Article  Google Scholar 

  15. Y. Wang, C. Ganpule, B.T. Liu, H. Li, K. Mori, B. Hill, M. Wuttig, R. Ramesh, J. Finder, Z. Yu, R. Droopad, and K. Eisenbeiser, Appl. Phys. Lett., 80, 97 (2000).

    Google Scholar 

  16. J.S. Hrowitz, K.S. Grabowski, K.B. Chrisey, and R.E. Leuchtner, Appl. Phys. Lett., 59, 1565 (1991).

    Google Scholar 

  17. R. Ramesh, T. Sands, and V.G. Keramidas, J. Electron. Mater., 23, 19 (1994).

    Google Scholar 

  18. H.N. Al-Shareff, K. Bellur, O. Auciello, and A.I. Kingon, Ferroelectrics, 152, 85 (1994).

    Google Scholar 

  19. Y. Shimizu, K.R. Udayakumar, and L.E. Cross, J. Am. Ceram. Soc., 74, 3023 (1991).

    Google Scholar 

  20. T. Fukami, I. Mimenmura, Y. Hiroshima, and T. Osada, Jpn. J. Appl. Phys., 130, 2155(1991).

    Google Scholar 

  21. C.M. Foster, R. Csencsits, G.R. Bai, Z. Li, L.A. Wills, R. Hiskes, H.N. Al-Shareef, and D. Dimos, Int. Ferroelectric, 10, 3 (1995).

    Google Scholar 

  22. M. De Keijser, P.J. Van Veldhoven, and G.J.M. Dormans, Mat. Res. Soc. Symp. Proc., 310, 223 (1993).

    Google Scholar 

  23. P.K. Larsen, G.J.M. Dormans, D.J. Taylor, and P.J. Van Veldhoven, J. Appl. Phys., 76, 2405 (1994).

    Google Scholar 

  24. V. Nagarajan, A. Stanishevsky, L. Chen, T. Zhao, B.T. Liu, J. Mehlgailis, A.L. Roytburd, and R. Ramesh, Appl. Phys. Lett., 81, 4215 (2002).

    Google Scholar 

  25. A.H. Carim, B.A. Turtle, D.H. Doughty, and S.L. Martinez, J. Am. Ceram. Soc., 74, 1455 (1991).

    Google Scholar 

  26. R. Ramesh, W.K. Chan, B. Wilkens, H. Gilchrist, T. Sands, J.M. Tarascon, V.G. Keramidas, D.K. Fork, J. Lee, and A. Safari, Appl. Phys. Lett., 61, 1537 (1992).

    Google Scholar 

  27. P. Muralt, J. Micromech. Microeng., 10, 136 (2000).

    Google Scholar 

  28. C.S. Ganpule, A. Stanishevsky, Q. Su, S. Aggarwal, J. Mengailis, E. Williams, and R. Ramesh, Appl. Phys. Lett., 75, 4091 (1999).

    Google Scholar 

  29. Dennis L. Polla and Lorraine F. Francis, Annu. Rev. Mater. Sci., 28, 563 (1998).

    Google Scholar 

  30. M.J. Haun, E. Furman, S.J. Jang, and L.E. Cross, Ferroelectrics, 99, 45 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, S.Y., Liu, B.T., Ouyang, J. et al. Epitaxial Pb(Zr,Ti)O3 Capacitors on Si by Liquid Delivery Metalorganic Chemical Vapor Deposition. J Electroceram 14, 37–44 (2005). https://doi.org/10.1007/s10832-005-6582-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-005-6582-4

Keywords

  • PZT
  • liquid delivery MOCVD
  • Zr(dmhd)4
  • SrTiO3 template layer
  • LSCO/PZT/LSCO capacitors