Skip to main content
Log in

Development and Electromechanical Properties of Multimaterial Piezoelectric and Electrostrictive PMN-PT Monomorph Actuators

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Monolithic multimaterial monomorphs, comprised of varying ratios of piezoelectric 0.65Pb(Mg1/3 Nb2/3)O3-0.35PbTiO3 to electrostrictive 0.90Pb(Mg1/3Nb2/3)O3-0.10PbTiO3, have been co-fired at 1150C. The relative permittivity, displacement, and polarization hysteresis were investigated for varying ratios of piezoelectric to electrostrictive material. The permittivity of the 1:1 multimaterial monomorphs followed the dielectric mixing laws, showing a dielectric constant of 5,500 at room temperature. The P-E hysteresis loop of the 1:1 sample exhibited a maximum and remnant polarization slightly less than the piezoelectric PMN-PT 65/35, but higher than the electrostrictive PMN-PT 90/10. Displacement was found to be higher for the 3:1 monolithic monomorph actuators, reaching 76 μ m at 6 kV/cm. The results indicate that by minimizing the electrostrictive layer thickness the tip displacement can be substantially increased while maintaining a lower hysteresis than that of the purely piezoelectric counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.W. Tang, H.L.W. Chan, Y.M. Cheung, and P.C.K. Liu, Materials Chemistry and Physics, 75, 196 (2002).

    Article  Google Scholar 

  2. Z. He, J. Ma, R. Zhang, and L. Tao, Materials Letters, 56, 1084 (2002).

    Article  Google Scholar 

  3. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic, Boston, 1997).

    Google Scholar 

  4. M. Sitti, D. Campolo, J. Yan, R.S. Feraring, T. Su, D. Taylor, and T.D. Sands, Proceedings-IEEE International Conference on Robotic and Automation, 4, 3839 (2001).

  5. X. Li, J.S. Vartuli, D.L. Milius, I. A. Aksay, and W.Y. Shih, W.H. Shih, Journal of American Ceramic Society, 84(5), 996 (2001).

    Google Scholar 

  6. X. Zhu and Z. Meng, Sensor and Actuators A, 48, 169 (1995).

    Google Scholar 

  7. J. Qui, J. Tani T. Ueno, T. Morita, H. Takahashi, and H. Du, Smart Mater. Struct. 12, 115 (2003).

    Google Scholar 

  8. J. Mantese, N.W. Schubring, A. Micheli, and M. Thompson, Applied Physics Letters, 81(6), 1068 (2002).

    Article  Google Scholar 

  9. T.F. McNulty, F. Mohammadi, A. Bandyopadhyay, D.F. Shanefield, and S.C. Danforth, Rapid Prototyping Journal, 4(4), 144 (1998).

    Article  Google Scholar 

  10. A. Safari, Ferroelectrics, 263 45 (2001).

    Google Scholar 

  11. A.J. Moulson and J. Herbet, Electroceramics, (Chapman and Hall, London, 1990).

    Google Scholar 

  12. A. Sihvola, Electromagnetic Mixing Formulas and Applications, (IEEE Electromagnetic waves series 47, London, UK, 1999).

    Google Scholar 

  13. Y.T. Or, C.K.Wong, B. Ploss, and F.G. Shin, Journal of Applied Physics, 93(7), 4112 (2003).

    Article  Google Scholar 

  14. T. Hauke, A. Kouvatov, R.Steinhausen, W.Seifert, H. Beige, H.T. Langhammer, and H.P. Abicht, Ferroelectrics, 238(1), 759 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Safari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, A., Allahverdi, M., Akdogan, E.K. et al. Development and Electromechanical Properties of Multimaterial Piezoelectric and Electrostrictive PMN-PT Monomorph Actuators. J Electroceram 15, 143–150 (2005). https://doi.org/10.1007/s10832-005-2191-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-005-2191-5

Keywords

Navigation