Skip to main content
Log in

Reactive Calcination Derived PZT Ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Perovskite PZT ceramics are synthesized from stoichiometric oxide ratios of Pb, Zr, and Ti. The oxide powders are mixed mechanically and calcinated, and then sintered to form the desired perovskite phase using conventional solid-state reaction and reactive calcination routes. Highly reactive powders are produced by reacting the materials near the temperature of maximum volumetric expansion. At this point, an almost single phase with relatively high homogeneous structure is obtained. Also, the highly reactive powders allow densification to occur at temperatures as low as 950C without the need to the additions of excess lead oxides. The dielectric properties of the PZT ceramics prepared by reactive calcination route are measured and compared with the conventional route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mal and R.P. Choudhary, J. Phys. Chem. Solids, 58(3), 421 (1997).

    Google Scholar 

  2. T.L. Jordan and Z. Ounaies, ICASE, NASA Langley Research Center (Hampton, Virginia, 2001), p. 2.

    Google Scholar 

  3. B. Jaffe, R. Roth, and S. Marzullo, J. Appl. Phys., 25(6), 809 (1954).

    Google Scholar 

  4. K. Kakegawa, O. Matsunaga, T. Kato, and Y. Sasaki, J. Am. Ceram. Soc., 78(4), 1071 (1995).

    Google Scholar 

  5. E. Leite, M. Cerqueira, L. Perazoli, R. Nasar, and J. Varela, J. Am. Ceram. Soc., 79(6), 1563 (1995).

    Google Scholar 

  6. Hong-Wen Wang, David A. Hall, and Frank R. Sale, J. Am. Ceram. Soc., 75(1), 124 (1992).

    Google Scholar 

  7. H. Cheng, J. Ma, B. Zhu, and Y. Cui, J. Am. Ceram. Soc., 76(3), 625 (1993).

    Google Scholar 

  8. A. Amer, S. Ibrahim, M. Ahmed, and M. Ramadan, in 8th Inter. Conference on Mining, Petroleum and Metallurgical Eng. Suez Canal University, Egypt, 2003, pp. 43–53.

  9. T. Shrout, P. Papet, S. Kim, and G. Lee, J. Am. Ceram. Soc., 73(7), 1862 (1990).

    Google Scholar 

  10. S. Venkataramani, Ph.D. Thesis, The Pennsylvania State University, University Park, 1981.

  11. T. Takagi, K. Anetami, and K. Shimiza, U.S. Pat. No. 4, 1989, p. 426.

  12. B. Hiremath, A. Kingon, and J. Biggers, J. Am. Ceram. Soc., 66(11), 790 (1983).

    Google Scholar 

  13. R.C. Buchanan, Ceramic Materials for Electronic, Processing, Properties and Applications (Marcel Dekker, Inc., New York, 1986).

    Google Scholar 

  14. Zhang, H. Uusimaki, S. Leppavuori, and Karijalainen, J. Appl. Phys. 76(7), 4294 (1994).

    Google Scholar 

  15. L. Hanh, K. Uchino, and S. Namura, J. Jpn. Appl. Phys., 17(4), 637 (1978).

    Google Scholar 

  16. K. Kakegawa, K. Arai, Y. Sasaki, and T. Tomizawa, J. Am. Ceram. Soc., 77(1), C49 (1988).

    Google Scholar 

  17. S.A. Mabud, J. Appl. Crystallogr., 13(3), 211 (1980).

    Google Scholar 

  18. P. Gr, Lucuta, J. Am. Ceram. Soc., 68(10), 533 (1985).

    Google Scholar 

  19. F. Vasiliu, P. Luctra, and F. Constantinescu, Phys. Stat. Sol., 80, 637 (1983).

    Google Scholar 

  20. S. Swartz and T. Shrout, Mater. Res. Bull., 17, 1245 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Amer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amer, A.M., Ibrahim, S.A., Ramadan, R.M. et al. Reactive Calcination Derived PZT Ceramics. J Electroceram 14, 273–281 (2005). https://doi.org/10.1007/s10832-005-0967-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-005-0967-2

Keywords:

Navigation