Skip to main content
Log in

Solid Electrolyte Materials, Devices, and Applications

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

This paper outlines the development status, issues, and applications of several solid electrolyte electrochemical devices currently being developed by Ceramatec and its partners. Ceramatec and its commercial partner Air Products and Chemicals, Inc., (APCI) have successfully developed and demonstrated an electrochemical device that utilizes a ceria-based, solid electrolyte to separate oxygen from air [1, 2]. Other oxygen separator projects utilize ion transport membrane(s) (ITM) composed of mixed ionic and electronic conductors to transport oxygen ions across the membrane by means of a pressure differential driving force to generate high purity oxygen or a chemical reaction driving force to produce synthesis gas from methane (ITM Syngas).

Ceramatec, in partnership with SOFCo, demonstrated kilowatt class solid oxide fuel cell (SOFC) stacks operating on a variety of fuels such as pipeline natural gas and reformed diesel. Ceramatec is presently working with Cummins and SOFCo to develop low cost modular fuel cells under the Department of Energy’s Solid-state Energy Conversion Alliance (SECA) initiative. Some of Ceramatec’s other programs are focused on development of gallate electrolyte based fuel cells [3] and metallic bipolar plates [4] for lower temperature operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.L. Meixner, et al., J. Electrochem. Soc. 149(9), D132 (2002).

    Google Scholar 

  • P.N. Dyer, et al., Solid State Ionics 134, 21 (2000).

    Google Scholar 

  • S. Elangovan et al., in Proc. SOFC VIII (The Electrochemical Society, NJ Pennington 2003).

    Google Scholar 

  • S. Elangovan et al., in Proc. SOFC VIII (The Electrochemical Society, NJPennington 2003).

    Google Scholar 

  • A.V. Joshi, U.S. Patent 4,879,016, Nov. 7 (1989).

  • A.V. Joshi, et al., U.S. Patent 5,021,137, June 4 (1991).

  • J.A. Nachlas, et al., U.S. Patent 5,298,138, March 29 (1994).

  • J.A. Nachlas, et al., U.S. Patent 5,338,623, Aug. 16 (1994).

  • D.M. Taylor, et al., U.S. Patent 5,378,345, Jan. 3 (1995).

  • J.A. Nachlas, et al., U.S. Patent 5,479,700, Jan. 2 (1996).

  • M.F. Carolan, et al., U.S. Patent 5,750,279, May 12 (1998).

  • S. Adler, et al., U.S. Patent 5,868,918, Feb. 9 (1999).

  • S. Adler, et al., U.S. Patent 6,042,703, March 28 (2000).

  • S. Adler, et al., U.S. Patent 6,117,288, Sept. 12 (2000).

  • H. Inaba and H. Tagawa, Solid State Ionics 83, 1 (1996).

    Article  CAS  Google Scholar 

  • S.J. Skinner and J.A. Kilner, Materials Today (31-37), March (2003).

  • S.P.S. Badwal, F.T. Ciacchi, and J. Drennan, Solid State Ionics 121, 253 (1999).

    Google Scholar 

  • M. Mogensen, N.M. Sammes, and G.A. Tompsett, Solid State Ionics 129, 63 (2000).

    Article  CAS  Google Scholar 

  • J.M. Ralph and J.A., Kilner, in Solid Oxide Fuel Cells V (SOFC V) edited by U. Stimming, S.C. Singhal, H. Tagawa, W. Lehnert, PV 97–40 (The Electrochemical Society Proceedings Series, NJ, Pennington 1997), p. 1021.

  • D.L. Meixner and R.A. Cutler, Solid State Ionics 146, 273 (2002).

    Google Scholar 

  • D.L. Meixner and R.A. Cutler, Solid State Ionics 146, 285 (2002).

    Google Scholar 

  • A.J. Bard and L.R. Faulkner, Electrochemical Methods Fundamentals and Applications (John Wiley and Sons, NY, NY, 1980), p. 91.

    Google Scholar 

  • T. Ishihara, M. Higuchi, H. Furutani, T. Fukushima, H. Nishiguchi, and Y. Takita, J. Electrochem. Soc. 5, 144 (1997).

    Google Scholar 

  • K. Huang, M. Feng, and J.B. Goodenough, J. Am. Cer. Soc., 79, 4 (1996).

    Google Scholar 

  • K. Huang and J.Goodenough, Final Report to EPRI, Report No. TR-108742, Oct. 1997.

  • J.W. Yan, Z.G. Lu, Y. Jiang, Y.L. Dong, C.Y. Yu, and W.Z. Li, J. Electrochem. Soc. 149(9), A1132 (2002).

    Google Scholar 

  • S. Balagopal, I. Bay, and S. Elangovan, in Proc. Fifth European SOFC Forum (2002), p. 233.

  • U.S. Patent 6,265,095—Interconnect for Solid Oxide Fuel Cells.

  • E. Batawi, W. Glatz, W. Kraussler, M. Janousek, B. Doggwiler, and R. Diethelm, in Proc. SOFC VI, Electrochem. Soc., edited

  • V.E. Stein and R.E. Richards, 7th Clean Coal Technology Conference, June 21, 1999.

  • V.E. Stein and R.E. Richards, 16th International Pittsburgh Coal Conference Oct. 11, 1999.

  • D. Khang, et al. U.S. Patent 5516359, 1996.

  • R.M. Thorogood, et al., U.S. Patent 5240480, 1993.

  • S.L. Russek et al., U.S. Patent 5562754, 1996.

  • S.L. Russek et al., U.S. Patent 5565017, 1996.

  • D. Khang, et al., U.S. Patent 5657624, 1997.

  • M.F. Carolan, C.M. Chen, and S.W. Rynders, ACS Spring Meeting, New Orleans, LA, USA, March 26, 2003.

  • S. Nataraj, R.B. Moore, and S.L. Russek, U.S. Patent 6048472, 2000.

  • S. Nataraj and S.L. Russek, U.S. Patent 6077323, 2000.

  • S. Nataraj and S.L. Russek, U.S. Patent 6110979, 2000.

  • S. Nataraj, P.N. Dyer, and S.L. Russek, U.S. Patent 6114400, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Steppan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, A.V., Steppan, J.J., Taylor, D.M. et al. Solid Electrolyte Materials, Devices, and Applications. J Electroceram 13, 619–625 (2004). https://doi.org/10.1007/s10832-004-5168-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-004-5168-x

Keywords

Navigation