Abstract
We demonstrate a model of chirp-velocity sensitivity in the inferior colliculus (IC) that retains the tuning to amplitude modulation (AM) that was established in earlier models. The mechanism of velocity sensitivity is sequence detection by octopus cells of the posteroventral cochlear nucleus, which have been proposed in physiological studies to respond preferentially to the order of arrival of cross-frequency inputs of different amplitudes. Model architecture is based on coincidence detection of a combination of excitatory and inhibitory inputs. Chirp-sensitivity of the IC output is largely controlled by the strength and timing of the chirp-sensitive octopus-cell inhibitory input. AM tuning is controlled by inhibition and excitation that are tuned to the same frequency. We present several example neurons that demonstrate the feasibility of the model in simulating realistic chirp-sensitivity and AM tuning for a wide range of characteristic frequencies. Additionally, we explore the systematic impact of varying parameters on model responses. The proposed model can be used to assess the contribution of IC chirp-velocity sensitivity to responses to complex sounds, such as speech.
Similar content being viewed by others
Data availability
All code will be made freely available at https://doi.org/10.17605/OSF.IO/7S62V.
References
Adams, J. C. (1997). Projections from octopus cells of the posteroventral cochlear nucleus to the ventral nucleus of the lateral lemniscus in cat and human. Aud Neurosci, 3(4), 335–350.
Andoni, S., Li, N., & Pollak, G. D. (2007). Spectrotemporal receptive fields in the inferior colliculus revealing selectivity for spectral motion in conspecific vocalizations. The Journal of Neuroscience, 27(18), 4882–4893. https://doi.org/10.1523/jneurosci.4342-06.2007
Bal, R., & Oertel, D. (2001). Potassium currents in octopus cells of the mammalian cochlear nucleus. Journal of Neurophysiology, 86(5), 2299–2311. https://doi.org/10.1152/jn.2001.86.5.2299
Cai, H., Carney, L. H., & Colburn, H. S. (1998). A model for binaural response properties of inferior colliculus neurons. I. A model with interaural time difference-sensitive excitatory and inhibitory inputs. The Journal of the Acoustical Society of America, 103(1), 475–493. https://doi.org/10.1121/1.421100
Carney, L. H., Li, T., & McDonough, J. M. (2015). Speech coding in the brain: representation of vowel formants by midbrain neurons tuned to sound fluctuations. Eneuro, 2(4), ENEURO.0004-0015.2015. https://doi.org/10.1523/eneuro.0004-15.2015
Colburn, H. S. (1973). Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. The Journal of the Acoustical Society of America, 54(6), 1458–1470. https://doi.org/10.1121/1.1914445
Covey, E., & Casseday, J. (1991). The monaural nuclei of the lateral lemniscus in an echolocating bat: Parallel pathways for analyzing temporal features of sound. The Journal of Neuroscience, 11(11), 3456–3470. https://doi.org/10.1523/jneurosci.11-11-03456.1991
Farhadi, A., Jennings, S. G., Strickland, E. A., & Carney, L. H. (2023). Subcortical auditory model including efferent dynamic gain control with inputs from cochlear nucleus and inferior colliculus. The Journal of the Acoustical Society of America, 154(6), 3644–3659. https://doi.org/10.1121/10.0022578
Fuzessery, Z. M., & Hall, J. C. (1996). Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus. Journal of Neurophysiology, 76(2), 1059–1073. https://doi.org/10.1152/jn.1996.76.2.1059
Gittelman, J. X., Li, N., & Pollak, G. D. (2009). Mechanisms underlying directional selectivity for frequency-modulated sweeps in the inferior colliculus revealed by in vivo whole-cell recordings. The Journal of Neuroscience, 29(41), 13030–13041. https://doi.org/10.1523/jneurosci.2477-09.2009
Godfrey, D. A., Kiang, N. Y. S., & Norris, B. E. (1975). Single unit activity in the posteroventral cochlear nucleus of the cat. Journal of Comparative Neurology, 162(2), 247–268. https://doi.org/10.1002/cne.901620206
Golding, N., Robertson, D., & Oertel, D. (1995). Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. The Journal of Neuroscience, 15(4), 3138–3153. https://doi.org/10.1523/jneurosci.15-04-03138.1995
Golding, N. L., Ferragamo, M. J., & Oertel, D. (1999). Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus. The Journal of Neuroscience, 19(8), 2897–2905. https://doi.org/10.1523/jneurosci.19-08-02897.1999
Gordon, M., & O’Neill, W. E. (1998). Temporal processing across frequency channels by FM selective auditory neurons can account for FM rate selectivity. Hearing Research, 122(1), 97–108. https://doi.org/10.1016/S0378-5955(98)00087-2
Guest, D. R., & Carney, L. H. (2023). A fast and flexible approximation of power-law adaptation for auditory computational models. bioRxiv, 2023.2011.2030.569467. https://doi.org/10.1101/2023.11.30.569467
Heinz, M. G., Colburn, H. S., & Carney, L. H. (2001a). Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Computation, 13(10), 2273–2316. https://doi.org/10.1162/089976601750541804
Heinz, M. G., Colburn, H. S., & Carney, L. H. (2001b). Evaluating auditory performance limits: II. One-parameter discrimination with random-level variation. Neural computation, 13(10), 2317–2338. https://doi.org/10.1162/089976601750541813
Heinz, M. G., Colburn, H. S., & Carney, L. H. (2002). Quantifying the implications of nonlinear cochlear tuning for auditory-filter estimates. The Journal of the Acoustical Society of America, 111(2), 996–1011. https://doi.org/10.1121/1.1436071
Henry, K. S., Wang, Y., Abrams, K. S., & Carney, L. H. (2023). Mechanisms of masking by Schroeder-phase harmonic tone complexes in the budgerigar (Melopsittacus undulatus). Hearing Research, 435, 108812. https://doi.org/10.1016/j.heares.2023.108812
Hewitt, M. J., & Meddis, R. (1994). A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus. The Journal of the Acoustical Society of America, 95(4), 2145–2159. https://doi.org/10.1121/1.408676
Kalluri, S., & Delgutte, B. (2003). Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. Journal of Computational Neuroscience, 14(1), 71–90. https://doi.org/10.1023/A:1021128418615
Keithley, E. M., & Schreiber, R. C. (1987). Frequency map of the spiral ganglion in the cat. The Journal of the Acoustical Society of America, 81(4), 1036–1042. https://doi.org/10.1121/1.394675
Kim, D. O., Carney, L., & Kuwada, S. (2020). Amplitude modulation transfer functions reveal opposing populations within both the inferior colliculus and medial geniculate body. Journal of Neurophysiology, 124(4), 1198–1215. https://doi.org/10.1152/jn.00279.2020
Klatt, D. H. (1980). Software for a cascade/parallel formant synthesizer. The Journal of the Acoustical Society of America, 67(3), 971–995. https://doi.org/10.1121/1.383940
Kreeger, L. J., Honnuraiah, S., Maeker, S., Shea, S., Fishell, G., & Goodrich, L. V. (2024). An anatomical and physiological basis for coincidence detection across time scales in the auditory system. bioRxiv, 2024.2002.2029.582808. https://doi.org/10.1101/2024.02.29.582808
Krips, R., & Furst, M. (2009a). Stochastic properties of coincidence-detector neural cells. Neural Computation, 21(9), 2524–2553. https://doi.org/10.1162/neco.2009.07-07-563
Krips, R., & Furst, M. (2009b). Stochastic properties of auditory brainstem coincidence detectors in binaural perception. The Journal of the Acoustical Society of America, 125(3), 1567–1583. https://doi.org/10.1121/1.3068446
Liberman, M. C. (1978). Auditory-nerve response from cats raised in a low-noise chamber. The Journal of the Acoustical Society of America, 63(2), 442–455. https://doi.org/10.1121/1.381736
Liberman, M. C. (1993). Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei. Journal of Comparative Neurology, 327(1), 17–36. https://doi.org/10.1002/cne.903270103
Liberman, A. M., & Mattingly, I. G. (1989). A specialization for speech perception. Science, 243(4890), 489–494. https://doi.org/10.1126/science.2643163
Lu, H.-W., Smith, P. H., & Joris, P. X. (2022). Mammalian octopus cells are direction selective to frequency sweeps by excitatory synaptic sequence detection. Proceedings of the National Academy of Sciences, 119(44), e2203748119. https://doi.org/10.1073/pnas.2203748119
Manis, P. B., & Campagnola, L. (2018). A biophysical modelling platform of the cochlear nucleus and other auditory circuits: From channels to networks. Hearing Research, 360, 76–91. https://doi.org/10.1016/j.heares.2017.12.017
Mitchell, P. W., Henry, K. S., & Carney, L. H. (2023). Sensitivity to direction and velocity of fast frequency chirps in the inferior colliculus of awake rabbit. Hearing Research, 440, 108915. https://doi.org/10.1016/j.heares.2023.108915
Nayagam, D. A. X., Clarey, J. C., & Paolini, A. G. (2005). Powerful, onset inhibition in the ventral nucleus of the lateral lemniscus. Journal of Neurophysiology, 94(2), 1651–1654. https://doi.org/10.1152/jn.00167.2005
Nelson, P. C., & Carney, L. H. (2004). A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. The Journal of the Acoustical Society of America, 116(4), 2173–2186. https://doi.org/10.1121/1.1784442
Oertel, D., Bal, R., Gardner, S. M., Smith, P. H., & Joris, P. X. (2000). Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proceedings of the National Academy of Sciences, 97(22), 11773–11779. https://doi.org/10.1073/pnas.97.22.11773
Osen, K. K. (1969). Cytoarchitecture of the cochlear nuclei in the cat. Journal of Comparative Neurology, 136(4), 453–483. https://doi.org/10.1002/cne.901360407
Pollak, G. D., Gittelman, J. X., Li, N., & Xie, R. (2011). Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: A comparison of bats with other mammals. Hearing Research, 273(1), 134–144. https://doi.org/10.1016/j.heares.2010.03.083
Rebhan, M., & Leibold, C. (2021). A phenomenological spiking model for octopus cells in the posterior–ventral cochlear nucleus. Biological Cybernetics, 115(4), 331–341. https://doi.org/10.1007/s00422-021-00881-x
Rhode, W. S. (1994). Temporal coding of 200% amplitude modulated signals in the ventral cochlear nucleus of cat. Hearing Research, 77(1), 43–68. https://doi.org/10.1016/0378-5955(94)90252-6
Rhode, W. S., & Smith, P. H. (1986). Encoding timing and intensity in the ventral cochlear nucleus of the cat. Journal of Neurophysiology, 56(2), 261–286. https://doi.org/10.1152/jn.1986.56.2.261
Rhode, W. S., Oertel, D., & Smith, P. H. (1983). Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. Journal of Comparative Neurology, 213(4), 448–463. https://doi.org/10.1002/cne.902130408
Rieke, F., Warland, D., Van Steveninck, Rd. R., & Bialek, W. (1999). Spikes: exploring the neural code. MIT Press.
Schroeder, M. (1970). Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.). IEEE Transactions on Information Theory, 16(1), 85–89. https://doi.org/10.1109/TIT.1970.1054411
Siebert, W. M. (1965). Some implications of the stochastic behavior of primary auditory neurons. Kybernetik, 2(5), 206–215. https://doi.org/10.1007/BF00306416
Siebert, W. M. (1970). Frequency discrimination in the auditory system: Place or periodicity mechanisms? Proceedings of the IEEE, 58(5), 723–730. https://doi.org/10.1109/PROC.1970.7727
Spencer, M., Grayden, D., Bruce, I., Meffin, H., & Burkitt, A. (2012). An investigation of dendritic delay in octopus cells of the mammalian cochlear nucleus. Frontiers in Computational Neuroscience, 6. https://doi.org/10.3389/fncom.2012.00083
Spencer, M. J., Meffin, H., Burkitt, A. N., & Grayden, D. B. (2018). Compensation for traveling wave delay through selection of dendritic delays using spike-timing-dependent plasticity in a model of the auditory brainstem. Frontiers in Computational Neuroscience, 12. https://doi.org/10.3389/fncom.2018.00036
Steenken, F., Oetjen, H., Beutelmann, R., Carney, L. H., Koeppl, C., & Klump, G. M. (2022). Neural processing and perception of Schroeder-phase harmonic tone complexes in the gerbil: Relating single-unit neurophysiology to behavior. European Journal of Neuroscience, 56(3), 4060–4085. https://doi.org/10.1111/ejn.15744
Vater, M., Covey, E., & Casseday, J. H. (1997). The columnar region of the ventral nucleus of the lateral lemniscus in the big brown bat (Eptesicus fuscus): Synaptic arrangements and structural correlates of feedforward inhibitory function. Cell and Tissue Research, 289(2), 223–233. https://doi.org/10.1007/s004410050869
Zilany, M. S. A., Bruce, I. C., & Carney, L. H. (2014). Updated parameters and expanded simulation options for a model of the auditory periphery. The Journal of the Acoustical Society of America, 135(1), 283–286. https://doi.org/10.1121/1.4837815
Acknowledgements
We acknowledge Dr. Daniel Guest’s and Doug Schwarz’s contributions to our computational modeling efforts.
Author information
Authors and Affiliations
Contributions
P.W.M. – Development of hypothesis and model concept; implemented and tested model; wrote manuscript; obtained funding. L.H.C. – Development of hypothesis and model concept; edited manuscript; obtained funding.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Action Editor: Shihab Shamma
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mitchell, P.W., Carney, L.H. A computational model of auditory chirp-velocity sensitivity and amplitude-modulation tuning in inferior colliculus neurons. J Comput Neurosci 52, 285–302 (2024). https://doi.org/10.1007/s10827-024-00880-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-024-00880-4