Skip to main content
Log in

The role of astrocytes in place cell formation: A computational modeling study

  • ORIGINAL ARTICLE
  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Place cells develop spatially-tuned receptive fields during the early stages of novel environment exploration. The generative mechanism underlying these spatially-selective responses remains largely elusive, but has been associated with theta rhythmicity. An important factor implicating the transformation of silent cells to place cells is a spatially-uniform depolarization that is mediated by a persistent sodium current. This neuronal current is modulated by extracellular calcium concentration, which, in turn, is actively controlled by astrocytes. However, there is no established relationship between the neuronal depolarization and astrocytic activity. To consider this link, we designed a bioplausible computational model of a neuronal-astrocytic network, where astrocytes induced the transient emergence of place fields in silent cells, and accelerated the plasticity-induced consolidation of place cells. Interestingly, theta oscillations emerged naturally at the network level, resulting from the astrocytic modulation of subcellular neuronal properties. Our results suggest that astrocytes participate in spatial mapping and exploration, and further highlight the computational roles of these cells in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adoff, M. D., Climer, J. R., Davoudi, H., Marvin, J. S., Looger, L. L., & Dombeck, D. A. (2021). The functional organization of excitatory synaptic input to place cells. Nature communications, 12, 1–15.

    Article  Google Scholar 

  • Amilhon, B., Huh, C. Y., Manseau, F., Ducharme, G., Nichol, H., Adamantidis, A., & Williams, S. (2015). Parvalbumin interneurons of hippocampus tune population activity at theta frequency. Neuron, 86, 1277–1289.

    Article  CAS  PubMed  Google Scholar 

  • Ashhad, S., & Narayanan, R. (2019). Stores, channels, glue, and trees: active glial and active dendritic physiology. Molecular neurobiology, 56, 2278–2299.

    Article  CAS  PubMed  Google Scholar 

  • Bi, G.-Q., & Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of neuroscience, 18, 10464–10472.

    Article  CAS  PubMed  Google Scholar 

  • Bittner, K. C., Grienberger, C., Vaidya, S. P., Milstein, A. D., Macklin, J. J., Suh, J., et al. (2015). Conjunctive input processing drives feature selectivity in hippocampal ca1 neurons. Nature neuroscience, 18, 1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., & Magee, J. C. (2017). Behavioral time scale synaptic plasticity underlies ca1 place fields. Science, 357, 1033–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocard, F., Shevtsova, N. A., Bouhadfane, M., Tazerart, S., Heinemann, U., Rybak, I. A., & Vinay, L. (2013). Activity-dependent changes in extracellular ca2+ and k+ reveal pacemakers in the spinal locomotor-related network. Neuron, 77, 1047–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, R. A., Walling, S. G., Milway, J. S., & Harley, C. W. (2005). Locus ceruleus activation suppresses feedforward interneurons and reduces \(\beta\)-\(\gamma\) electroencephalogram frequencies while it enhances \(\theta\) frequencies in rat dentate gyrus. Journal of Neuroscience, 25, 1985–1991.

    Article  CAS  PubMed  Google Scholar 

  • Burgess, N., Maguire, E. A., & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35, 625–641.

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33, 325–340.

    Article  PubMed  Google Scholar 

  • Buzsáki, G., Buhl, D. L., Harris, K. D., Csicsvari, J., Czéh, B., & Morozov, A. (2003). Hippocampal network patterns of activity in the mouse. Neuroscience, 116, 201–211.

    Article  PubMed  Google Scholar 

  • Buzsáki, G., Vanderwolf, C. H., et al. (1983). Cellular bases of hippocampal eeg in the behaving rat. Brain Research Reviews, 6, 139–171.

    Article  Google Scholar 

  • Colgin, L. L., Moser, E. I., & Moser, M.-B. (2008). Understanding memory through hippocampal remapping. Trends in neurosciences, 31, 469–477.

    Article  CAS  PubMed  Google Scholar 

  • Condamine, S., Lavoie, R., Verdier, D., & Kolta, A. (2018). Functional rhythmogenic domains defined by astrocytic networks in the trigeminal main sensory nucleus. Glia, 66, 311–326.

    Article  PubMed  Google Scholar 

  • Cressant, A., Muller, R. U., & Poucet, B. (2002). Remapping of place cell firing patterns after maze rotations. Experimental brain research, 143, 470–479.

    Article  PubMed  Google Scholar 

  • Curreli, S., Bonato, J., Romanzi, S., Panzeri, S., & Fellin, T. (2022). Complementary encoding of spatial information in hippocampal astrocytes. PLoS biology, 20, e3001530.

  • De Pittà, M., Brunel, N., & Volterra, A. (2016). Astrocytes: orchestrating synaptic plasticity? Neuroscience, 323, 43–61.

    Article  PubMed  Google Scholar 

  • Deemyad, T., Lüthi, J., & Spruston, N. (2018). Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nature communications, 9, 1–13.

    Article  CAS  Google Scholar 

  • Dong, C., Madar, A. D., & Sheffield, M. E. (2021). Distinct place cell dynamics in ca1 and ca3 encode experience in new environments. Nature communications, 12, 1–13.

    Article  Google Scholar 

  • Doron, A., Rubin, A., Benmelech-Chovav, A., Benaim, N., Carmi, T., Kreisel, T., Ziv, Y., & Goshen, I. (2021). Hippocampal astrocytes encode reward location. bioRxiv, .

  • Epsztein, J., Brecht, M., & Lee, A. K. (2011). Intracellular determinants of hippocampal ca1 place and silent cell activity in a novel environment. Neuron, 70, 109–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinoza, C., Guzman, S. J., Zhang, X., & Jonas, P. (2018). Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus. Nature communications, 9, 1–10.

    Article  CAS  Google Scholar 

  • Frank, L. M., Stanley, G. B., & Brown, E. N. (2004). Hippocampal plasticity across multiple days of exposure to novel environments. Journal of Neuroscience, 24, 7681–7689.

    Article  CAS  PubMed  Google Scholar 

  • Fujita, Y., & Sato, T. (1964). Intracellular records from hippocampal pyramidal cells in rabbit during theta rhythm activity. Journal of Neurophysiology, 27, 1011–1025.

    Article  CAS  PubMed  Google Scholar 

  • Gerlai, R., Wojtowicz, J. M., Marks, A., & Roder, J. (1995). Overexpression of a calcium-binding protein, s100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learning & Memory, 2, 26–39.

    Article  CAS  Google Scholar 

  • Golomb, D., Yue, C., & Yaari, Y. (2006). Contribution of persistent na+ current and m-type k+ current to somatic bursting in ca1 pyramidal cells: combined experimental and modeling study. Journal of neurophysiology, 96, 1912–1926.

    Article  CAS  PubMed  Google Scholar 

  • Grienberger, C., Milstein, A. D., Bittner, K. C., Romani, S., & Magee, J. C. (2017). Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in ca1 place cells. Nature neuroscience, 20, 417–426.

    Article  CAS  PubMed  Google Scholar 

  • Haas, J. S., Nowotny, T., & Abarbanel, H. D. (2006). Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. Journal of neurophysiology, 96, 3305–3313.

    Article  PubMed  Google Scholar 

  • Halassa, M. M., Fellin, T., Takano, H., Dong, J.-H., & Haydon, P. G. (2007). Synaptic islands defined by the territory of a single astrocyte. Journal of Neuroscience, 27, 6473–6477.

    Article  CAS  PubMed  Google Scholar 

  • Hassanpoor, H., Fallah, A., & Raza, M. (2014). Mechanisms of hippocampal astrocytes mediation of spatial memory and theta rhythm by gliotransmitters and growth factors. Cell biology international, 38, 1355–1366.

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo, M. E. (2005). What is the function of hippocampal theta rhythm?–linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus, 15, 936–949.

    Article  PubMed  Google Scholar 

  • Hasselmo, M. E., Alexander, A. S., Dannenberg, H., & Newman, E. L. (2020). Overview of computational models of hippocampus and related structures: Introduction to the special issue.

  • Hasselmo, M. E., Wyble, B. P., & Wallenstein, G. V. (1996). Encoding and retrieval of episodic memories: role of cholinergic and gabaergic modulation in the hippocampus. Hippocampus, 6, 693–708.

    Article  CAS  PubMed  Google Scholar 

  • Haydon, P. G., & Nedergaard, M. (2015). How do astrocytes participate in neural plasticity? Cold Spring Harbor perspectives in biology, 7, a020438.

  • Heinemann, U., Lux, H., & Gutnick, M. (1977). Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Experimental Brain Research, 27, 237–243.

    CAS  PubMed  Google Scholar 

  • Hsu, C.-L., Zhao, X., Milstein, A. D., & Spruston, N. (2018). Persistent sodium current mediates the steep voltage dependence of spatial coding in hippocampal pyramidal neurons. Neuron, 99, 147–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov, V. A., & Michmizos, K. P. (2021). Increasing liquid state machine performance with edge-of-chaos dynamics organized by astrocyte-modulated plasticity. In 35th Conference on Neural Information Processing Systems (NeurIPS 2021) (pp. 1–10).

  • Jeewajee, A., Lever, C., Burton, S., O’keefe, J., & Burgess, N. (2008). Environmental novelty is signaled by reduction of the hippocampal theta frequency. Hippocampus, 18, 340–348.

  • Kastanenka, K. V., Moreno-Bote, R., De Pittà, M., Perea, G., Eraso-Pichot, A., Masgrau, R., et al. (2020). A roadmap to integrate astrocytes into systems neuroscience. Glia, 68, 5–26.

    Article  PubMed  Google Scholar 

  • Lee, D., Lin, B.-J., & Lee, A. K. (2012). Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science, 337, 849–853.

    Article  CAS  PubMed  Google Scholar 

  • Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in neurosciences, 20, 38–43.

    Article  CAS  PubMed  Google Scholar 

  • Milstein, A. D., Li, Y., Bittner, K. C., Grienberger, C., Soltesz, I., Magee, J. C., & Romani, S. (2020). Bidirectional synaptic plasticity rapidly modifies hippocampal representations independent of correlated activity. BioRxiv.

  • Monaco, J. D., Rao, G., Roth, E. D., & Knierim, J. J. (2014). Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nature neuroscience, 17, 725–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morquette, P., Verdier, D., Kadala, A., Féthière, J., Philippe, A. G., Robitaille, R., & Kolta, A. (2015). An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nature neuroscience, 18, 844.

    Article  CAS  PubMed  Google Scholar 

  • Nardin, P., Tortorelli, L., Quincozes-Santos, A., De Almeida, L. M. V., Leite, M. C., Thomazi, A. P., et al. (2009). S100b secretion in acute brain slices: modulation by extracellular levels of ca 2+ and k+. Neurochemical research, 34, 1603–1611.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, H., Knöpfel, T., Endo, S., & Itohara, S. (2002). Glial protein s100b modulates long-term neuronal synaptic plasticity. Proceedings of the National Academy of Sciences, 99, 4037–4042.

    Article  CAS  Google Scholar 

  • Nitz, D., & McNaughton, B. (2004). Differential modulation of ca1 and dentate gyrus interneurons during exploration of novel environments. Journal of neurophysiology, 91, 863–872.

    Article  PubMed  Google Scholar 

  • O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Experimental neurology, 51, 78–109.

    Article  PubMed  Google Scholar 

  • O’keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.

  • Pedrosa, V., & Clopath, C. (2020). The interplay between somatic and dendritic inhibition promotes the emergence and stabilization of place fields. PLoS computational biology, 16, e1007955.

  • Perea, G., Navarrete, M., & Araque, A. (2009). Tripartite synapses: astrocytes process and control synaptic information. Trends in neurosciences, 32, 421–431.

    Article  CAS  PubMed  Google Scholar 

  • Pike, F. G., Meredith, R. M., Olding, A. W., & Paulsen, O. (1999). Postsynaptic bursting is essential for ‘hebbian’induction of associative long-term potentiation at excitatory synapses in rat hippocampus. The Journal of physiology, 518, 571–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polykretis, I., Ivanov, V., & Michmizos, K. P. (2018). A neural-astrocytic network architecture: Astrocytic calcium waves modulate synchronous neuronal activity. In Proceedings of the International Conference on Neuromorphic Systems (pp. 1–8).

  • Pouille, F., Marin-Burgin, A., Adesnik, H., Atallah, B. V., & Scanziani, M. (2009). Input normalization by global feedforward inhibition expands cortical dynamic range. Nature neuroscience, 12, 1577–1585.

    Article  CAS  PubMed  Google Scholar 

  • Pouille, F., & Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science, 293, 1159–1163.

    Article  CAS  PubMed  Google Scholar 

  • Ryczko, D., Hanini-Daoud, M., Condamine, S., Bréant, B. J., Fougère, M., Araya, R., & Kolta, A. (2021). S100\(\beta\)-mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. The Journal of physiology, 599, 677–707.

    Article  CAS  PubMed  Google Scholar 

  • Sakatani, S., Seto-Ohshima, A., Shinohara, Y., Yamamoto, Y., Yamamoto, H., Itohara, S., & Hirase, H. (2008). Neural-activity-dependent release of s100b from astrocytes enhances kainate-induced gamma oscillations in vivo. Journal of Neuroscience, 28, 10928–10936.

    Article  CAS  PubMed  Google Scholar 

  • Salinas, E., & Thier, P. (2000). Gain modulation: a major computational principle of the central nervous system. Neuron, 27, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Sheffield, M. E., Adoff, M. D., & Dombeck, D. A. (2017). Increased prevalence of calcium transients across the dendritic arbor during place field formation. Neuron, 96, 490–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheffield, M. E., & Dombeck, D. A. (2019). Dendritic mechanisms of hippocampal place field formation. Current opinion in neurobiology, 54, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Sibille, J., Duc, K. D., Holcman, D., & Rouach, N. (2015). The neuroglial potassium cycle during neurotransmission: role of kir4. 1 channels. PLoS computational biology, 11.

  • Sjöström, J., & Gerstner, W. (2010). Spike-timing dependent plasticity. Spike-timing dependent plasticity, 35.

  • Stroud, J. P., Porter, M. A., Hennequin, G., & Vogels, T. P. (2018). Motor primitives in space and time via targeted gain modulation in cortical networks. Nature neuroscience, 21, 1774–1783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, H., Alroy, G., Kirson, E. D., & Yaari, Y. (2001). Extracellular calcium modulates persistent sodium current-dependent burst-firing in hippocampal pyramidal neurons. Journal of Neuroscience, 21, 4173–4182.

    Article  CAS  PubMed  Google Scholar 

  • Swinehart, C. D., & Abbott, L. (2005). Supervised learning through neuronal response modulation. Neural computation, 17, 609–631.

    Article  PubMed  Google Scholar 

  • Takahashi, H., & Magee, J. C. (2009). Pathway interactions and synaptic plasticity in the dendritic tuft regions of ca1 pyramidal neurons. Neuron, 62, 102–111.

    Article  CAS  PubMed  Google Scholar 

  • Tchernichovski, O., Benjamini, Y., & Golani, I. (1998). The dynamics of long-term exploration in the rat. Biological cybernetics, 78, 423–432.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, S. M., Berkowitz, L. E., & Clark, B. J. (2018). Behavioral and neural subsystems of rodent exploration. Learning and motivation, 61, 3–15.

    Article  PubMed  Google Scholar 

  • Turi, G. F., Li, W.-K., Chavlis, S., Pandi, I., O’Hare, J., Priestley, J. B., Grosmark, A. D., Liao, Z., Ladow, M., Zhang, J. F., et al. (2019). Vasoactive intestinal polypeptide-expressing interneurons in the hippocampus support goal-oriented spatial learning. Neuron, 101, 1150–1165.

  • Vanderwolf, C. H. (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and clinical neurophysiology, 26, 407–418.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science, 261, 1055–1058.

    Article  CAS  PubMed  Google Scholar 

  • Wulff, P., Ponomarenko, A. A., Bartos, M., Korotkova, T. M., Fuchs, E. C., Bähner, F., et al. (2009). Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proceedings of the National Academy of Sciences, 106, 3561–3566.

    Article  CAS  Google Scholar 

  • Yue, C., Remy, S., Su, H., Beck, H., & Yaari, Y. (2005). Proximal persistent na+ channels drive spike afterdepolarizations and associated bursting in adult ca1 pyramidal cells. Journal of Neuroscience, 25, 9704–9720.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Center for Medical Rehabilitation Research (NIH/NICHD) K12HD093427 Grant and the Rutgers Office of Research and Innovation. I.P. was partially funded by the Onassis Foundation Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos P. Michmizos.

Ethics declarations

Competing interest

The authors declare that they have no competing financial interests.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Action Editor: T. Sejnowski

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2.80 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polykretis, I., Michmizos, K.P. The role of astrocytes in place cell formation: A computational modeling study. J Comput Neurosci 50, 505–518 (2022). https://doi.org/10.1007/s10827-022-00828-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-022-00828-6

Keywords

Navigation