Modeling the interaction among three cerebellar disorders of eye movements: periodic alternating, gaze-evoked and rebound nystagmus

Abstract

A woman, age 44, with a positive anti-YO paraneoplastic cerebellar syndrome and normal imaging developed an ocular motor disorder including periodic alternating nystagmus (PAN), gaze-evoked nystagmus (GEN) and rebound nystagmus (RN). During fixation there was typical PAN but changes in gaze position evoked complex, time-varying oscillations of GEN and RN. To unravel the pathophysiology of this unusual pattern of nystagmus, we developed a mathematical model of normal function of the circuits mediating the vestibular-ocular reflex and gaze-holding including their adaptive mechanisms. Simulations showed that all the findings of our patient could be explained by two, small, isolated changes in cerebellar circuits: reducing the time constant of the gaze-holding integrator, producing GEN and RN, and increasing the gain of the vestibular velocity-storage positive feedback loop, producing PAN. We conclude that the gaze- and time-varying pattern of nystagmus in our patient can be accounted for by superposition of one model that produces typical PAN and another model that produces typical GEN and RN, without requiring a new oscillator in the gaze-holding system or a more complex, nonlinear interaction between the two models. This analysis suggest a strategy for uncovering gaze-evoked and rebound nystagmus in the setting of a time-varying nystagmus such as PAN. Our results are also consistent with current ideas of compartmentalization of cerebellar functions for the control of the vestibular velocity-storage mechanism (nodulus and ventral uvula) and for holding horizontal gaze steady (the flocculus and tonsil).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Code availability

Program code and model parameter data sets will be made freely available for academic use upon request.

References

  1. Baloh, R. W., Honrubia, V., & Konrad, H. R. (1976). Periodic alternating nystagmus. Brain. Journal of Neurology, 99, 11–26. https://doi.org/10.1093/brain/99.1.11

    CAS  Article  Google Scholar 

  2. Bögli, S. Y., Straumann, D., Schuknecht, B., et al. (2020). Cerebellar rebound nystagmus explained as gaze-evoked nystagmus relative to an eccentric set point: implications for the clinical examination. Cerebellum Lond Engl. https://doi.org/10.1007/s12311-020-01118-6

    Article  Google Scholar 

  3. Cannon, S. C., & Robinson, D. A. (1987). Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. Journal of Neurophysiology, 57, 1383–1409.

    CAS  Article  Google Scholar 

  4. Cohen, B., Helwig, D., & Raphan, T. (1987). Baclofen and velocity storage: a model of the effects of the drug on the vestibulo-ocular reflex in the rhesus monkey. Journal of Physiology, 393, 703–725.

    CAS  Article  Google Scholar 

  5. Furman, J. M., Wall, C., & Pang, D. L. (1990). Vestibular function in periodic alternating nystagmus. Brain: A Journal of Neurology, 113(Pt 5), 1425–1439. https://doi.org/10.1093/brain/113.5.1425

    Article  Google Scholar 

  6. Furman, J. M. R., Hain, T. C., & Paige, G. D. (1989). Central adaptation models of the vestibulo-ocular and optokinetic systems. Biological Cybernetics, 61, 255–264.

    CAS  Article  Google Scholar 

  7. Halmagyi, G. M., Rudge, P., Gresty, M. A., et al. (1980). Treatment of periodic alternating nystagmus. Annals of Neurology, 8, 609–611. https://doi.org/10.1002/ana.410080611

    CAS  Article  PubMed  Google Scholar 

  8. Hess, K. (1982). Do peripheral-vestibular lesions in man affect the position integrator of the eyes? Neuroscience Letters Supplement, 10, 242–243.

    Google Scholar 

  9. Hood, J. D. (1981). Further observations on the phenomenon of rebound nystagmus. Annals of the New York Academy of Sciences, 374, 532–539. https://doi.org/10.1111/j.1749-6632.1981.tb30898.x

    CAS  Article  PubMed  Google Scholar 

  10. Hood, J. D., Kayan, A., Leech, J., et al. (1973). Rebound nystagmus. Brain, 96, 507–526.

    CAS  Article  Google Scholar 

  11. Jeong, H. S., Oh, J. Y., Kim, J. S., et al. (2007). Periodic alternating nystagmus in isolated nodular infarction. Neurology, 68, 956–957. https://doi.org/10.1212/01.wnl.0000257111.24769.d2

    Article  PubMed  Google Scholar 

  12. Leigh, R. J., Robinson, D. A., & Zee, D. S. (1981). A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic-vestibular system. Annals of the New York Academy of Sciences, 374, 619–635. https://doi.org/10.1111/j.1749-6632.1981.tb30906.x

    CAS  Article  PubMed  Google Scholar 

  13. Leigh, R. J., & Zee, D. S. (2015). The Neurology of Eye Movements. Oxford University Press.

    Book  Google Scholar 

  14. Oh, Y. M., Choi, K. D., Oh, S. Y., & Kim, J. S. (2006). Periodic alternating nystagmus with circumscribed nodular lesion. Neurology, 67, 399. https://doi.org/10.1212/01.wnl.0000219818.35451.10

    Article  PubMed  Google Scholar 

  15. Optican, L. M., & Zee, D. S. (1984). A hypothetical explanation of congenital nystagmus. Biological Cybernetics, 50, 119–134. https://doi.org/10.1007/BF00337159

    CAS  Article  PubMed  Google Scholar 

  16. Otero-Millan, J., Colpak, A. I., Kheradmand, A., & Zee, D. S. (2019). Rebound nystagmus, a window into the oculomotor integrator. Progress in Brain Research. https://doi.org/10.1016/bs.pbr.2019.04.040

    Article  PubMed  Google Scholar 

  17. Raphan, D. T., Matsuo, V., & Cohen, B. (1979). Velocity storage in the vestibulo-ocular reflex arc (VOR). Experimental Brain Research, 35, 229–248. https://doi.org/10.1007/BF00236613

    CAS  Article  PubMed  Google Scholar 

  18. Ritter, M. S., Bertolini, G., Straumann, D., & Bögli, S. Y. (2020). Prevalence and characteristics of physiological gaze-evoked and rebound nystagmus: implications for testing their pathological counterparts. Frontiers in Neurology, 11, 547015. https://doi.org/10.3389/fneur.2020.547015

    Article  PubMed  PubMed Central  Google Scholar 

  19. Robinson, D. A. (1973). Oculomotor control system. Investigative Ophthalmology, 12, 164–166.

    CAS  PubMed  Google Scholar 

  20. Robinson, D. A. (1974). The effect of cerebellectomy on the cat’s vestibulo-ocular integrator. Brain Research, 71, 195–207. https://doi.org/10.1016/0006-8993(74)90961-5

    CAS  Article  PubMed  Google Scholar 

  21. Robinson, D. A., Zee, D. S., Hain, T. C., et al. (1984). Alexander’s law: Its behavior and origin in the human vestibulo-ocular reflex. Annals of Neurology, 16, 714–722. https://doi.org/10.1002/ana.410160614

    CAS  Article  PubMed  Google Scholar 

  22. Shemesh, A. A., & Zee, D. S. (2019). Eye movement disorders and the cerebellum. Journal of Clinical Neurophysiology, 36, 405–414. https://doi.org/10.1097/WNP.0000000000000579

    Article  PubMed  PubMed Central  Google Scholar 

  23. Waespe, W., Cohen, B., & Raphan, T. (1985). Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science, 228, 199–202.

    CAS  Article  Google Scholar 

  24. Zee, D. S., Jareonsettasin, P., & Leigh, R. J. (2017). Ocular stability and set-point adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160199. https://doi.org/10.1098/rstb.2016.0199

    Article  Google Scholar 

  25. Zee, D. S., Leigh, R. J., & Mathieu-Millaire, F. (1980). Cerebellar control of ocular gaze stability. Annals of Neurology, 7, 37–40. https://doi.org/10.1002/ana.410070108

    CAS  Article  PubMed  Google Scholar 

  26. Zee, D. S., Optican, L. M., Cook, J. D., et al. (1976). Slow saccades in spinocerebellar degeneration. Archives of Neurology, 33, 243–251.

    CAS  Article  Google Scholar 

  27. Zee, D. S., Yamazaki, A., Butler, P. H., & Gücer, G. (1981). Effects of ablation of flocculus and paraflocculus of eye movements in primate. Journal of Neurophysiology, 46, 878–899.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the David Robinson scholarship fund (Ari A Shemesh), the Betty and Paul Cinquegrana endowment (Ari A Shemesh, Jorge Otero-Millan and David S Zee), Leon Levy foundation (Jorge Otero-Millan) and NEI K99EY027846 and R00EY027846 (Jorge-Otero-Millan).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge Otero-Millan.

Ethics declarations

Ethics approval

The Dokuz Eylül University Review Board approved the experimental protocol. Written informed consent to publish obtained from the patient.

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Vision and Action Guest Editors: Aasef Shaikh and Jeffrey Shall

Communicated by Action Editor: Philippe Lefevre.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 91300 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shemesh, A.A., Kocoglu, K., Akdal, G. et al. Modeling the interaction among three cerebellar disorders of eye movements: periodic alternating, gaze-evoked and rebound nystagmus. J Comput Neurosci 49, 295–307 (2021). https://doi.org/10.1007/s10827-021-00790-9

Download citation

Keywords

  • Periodic alternating nystagmus
  • Gaze-evoked nystagmus
  • Rebound nystagmus
  • Adaptation
  • Superposition
  • Cerebellum
  • Paraneoplastic