Skip to main content

Optimal templates for signal extraction by noisy ideal detectors and human observers

Abstract

The optimal template for signal detection in white additive noise is the signal itself: the ideal observer matches each stimulus against this template and selects the stimulus associated with largest match. In the noisy ideal observer, internal noise is added to the decision variable returned by the template. While the ideal observer represents an unrealistic approximation to the human visual process, the noisy ideal observer may be applicable under certain experimental conditions. For template values constrained to lie within a specified range, theory predicts that the template associated with a noisy ideal observer should be a clipped image of the signal, a result which we demonstrate analytically using variational calculus. It is currently unknown whether the human process conforms to theory. We report a targeted analysis of the theoretical prediction for an experimental protocol that maximizes template-matching on the part of human participants. We find indicative evidence to support the theoretical expectation when internal noise is compared across participants, but not within each participant. Our results indicate that implicit knowledge about internal variability in different individuals is reflected by their detection templates; no implicit knowledge is retained for internal-noise fluctuations experienced by a given participant during data collection. The results also indicate that template encoding is constrained by the dynamic range of weight specification, rather than the range of output values transduced by the template-matching process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abbey, C.K., & Eckstein, M.P. (2006). Classification images for detection, contrast discrimination, and identification tasks with a common ideal observer. Journal of Vision, 6, 335–355.

    Article  Google Scholar 

  2. Ahumada, A., & Marken, R. (1971). Stimulus features in signal detection. Journal of the Acoustical Society of America, 49, 1751–1756.

    Article  Google Scholar 

  3. Ahumada, A.J. (2002). Classification image weights and internal noise level estimation. Journal of Vision, 2, 121–131.

    Article  Google Scholar 

  4. Awwad Shiekh Hasan, B., Joosten, E., & Neri, P. (2012). Estimation of internal noise using double passes: does it matter how the second pass is delivered? . Vision Research, 69, 1–9.

    Article  Google Scholar 

  5. Bryson, A.E.J., & Ho, Y.C. (1975). Applied optimal control. Routledge.

  6. Burak, Y., & Fiete, I.R. (2012). Fundamental limits on persistent activity in networks of noisy neurons. Proceedings of the National Academy of Sciences, 109(43), 17645–17650. https://doi.org/10.1073/pnas.1117386109. https://www.pnas.org/content/109/43/17645.

    CAS  Article  Google Scholar 

  7. Burgess, A.E., & Colborne, B. (1988). Visual signal detection. IV. observer inconsistency. Journal of the Optical Society of America A, 5, 617–627.

    CAS  Article  Google Scholar 

  8. Castillo, E., Luceño, A., & Pedregal, P. (2008). Composition functionals in calculus of variations. application to products and quotients. Mathematical Models & Methods in Applied Sciences 18. https://doi.org/10.1142/S0218202508002607.

  9. Clifford, C.W., Webster, M.A., Stanley, G.B., Stocker, A.A., Kohn, A., Sharpee, T.O., & Schwartz, O. (2007). Visual adaptation: neural, psychological and computational aspects. Vision Research, 47 (25), 3125–3131.

    Article  Google Scholar 

  10. Dosher, B., & Lu, Z.L. (2017). Visual perceptual learning and models. Annual Review Vision Science, 3, 343–363.

    Article  Google Scholar 

  11. Faisal, A.A., Selen, L.P., & Wolpert, D.M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292–303.

    CAS  Article  Google Scholar 

  12. Fleming, S.M., Dolan, R.J., & Frith, C.D. (2012). Metacognition: computation, biology and function. Philosophical Transaction of the Royal Society London B, Biological Sciences, 367(1594), 1280–1286.

    Article  Google Scholar 

  13. Geisler, W.S. (1989). Ideal observer theory in psychophysics and physiology. Physica Scripta, 39, 153–160.

    Article  Google Scholar 

  14. Geisler, W.S. (2011). Contributions of ideal observer theory to vision research. Vision Research, 51(7), 771–781.

    Article  Google Scholar 

  15. Goris, R.L., Movshon, J.A., & Simoncelli, E.P. (2014). Partitioning neuronal variability. Nature Neuroscience, 17(6), 858–865.

    CAS  Article  Google Scholar 

  16. Green, D.M. (1964). Consistency of auditory detection judgments. Psychological Review, 71, 392–407.

    CAS  Article  Google Scholar 

  17. Green, D.M., & Swets, J.A. (1966). Signal detection theory and psychophysics, Wiley, New York.

  18. Joosten, E.R., Shamma, S.A., Lorenzi, C., & Neri, P. (2016). Dynamic reweighting of auditory modulation filters. PLos Computational Biology, 12(7), e1005019.

    Article  Google Scholar 

  19. Liberzon, D. (2012). Calculus of variations and optimal control theory. Princeton: Princeton University Press.

    Book  Google Scholar 

  20. Lu, Z.L., & Dosher, B.A. (1998). External noise distinguishes attention mechanisms. Vision Research, 38, 1183–1198.

    CAS  Article  Google Scholar 

  21. Malinowska, A.B., Sidi Ammi, M.R., & Torres, D.F.M. (2010). Composition functionals in fractional calculus of variations. Communications Fractional Calculus, 1, 32–40.

    Google Scholar 

  22. Mamassian, P. (2016). Visual confidence. Annual Review Vision Science, 2, 459–481.

    Article  Google Scholar 

  23. Morvan, C., & Maloney, L.T. (2012). Human visual search does not maximize the post-saccadic probability of identifying targets. PLos Computational Biology, 8(2), e1002342.

    CAS  Article  Google Scholar 

  24. Murray, R.F. (2011). Classification images: A review. Journal of Vision, 11(5), 1–25. https://doi.org/10.1167/11.5.2.

    Article  Google Scholar 

  25. Murray, R.F., Bennett, P.J., & Sekuler, A.B. (2005). Classification images predict absolute efficiency. Journal of Vision, 5, 139–149.

    Article  Google Scholar 

  26. Neri, P. (2009). Nonlinear characterization of a simple process in human vision. Journal of Vision, 9, 1–29.

    Article  Google Scholar 

  27. Neri, P. (2010a). How inherently noisy is human sensory processing?. Psychonomic Bulletin & Review, 17, 802–808.

    Article  Google Scholar 

  28. Neri, P. (2010b). Stochastic characterization of small-scale algorithms for human sensory processing. Chaos, 20, 045118.

    Article  Google Scholar 

  29. Neri, P. (2010c). Visual detection under uncertainty operates via an early static, not late dynamic, non-linearity. Frontiers in Computational Neuroscience, 4, 151.

    Article  Google Scholar 

  30. Neri, P. (2013). The statistical distribution of noisy transmission in human sensors. Journal of Neural Engineering, 10(1), 016014.

    Article  Google Scholar 

  31. Neri, P. (2015). The elementary operations of human vision are not reducible to template matching. PLos Computational Biology, 11(11), e1004499.

    Article  Google Scholar 

  32. Pelli, D.G. (1991). Noise in the visual system may be early. In Landy, M., & Movshon, A.J. (Eds.) Computational models of visual processing (pp. 147–152). Cambridge: MIT Press.

  33. Pritchett, L.M., & Murray, R.F. (2015). Classification images reveal decision variables and strategies in forced choice tasks. Proceedings of the National Academy of Sciences of the United States of America, 112(23), 7321–7326.

    CAS  Article  Google Scholar 

  34. Sagan, H. (1969). Introduction to the calculus of variations. New York: McGraw-Hill.

    Google Scholar 

  35. Sharpee, T.O., Miller, K.D., & Stryker, M.P. (2008). On the importance of static nonlinearity in estimating spatiotemporal neural filters with natural stimuli. Journal of Neurophysiology, 99, 2496–2509.

    Article  Google Scholar 

  36. Solomon, J.A. (2002). Noise reveals visual mechanisms of detection and discrimination. Journal of Vision, 2, 105–120.

    Article  Google Scholar 

  37. Sterling, P., & Laughlin, S. (2015). Principles of neural design. Cambridge MA: MIT Press.

    Google Scholar 

  38. Tjan, B.S., & Nandy, A.S. (2006). Classification images with uncertainty. Journal of Vision, 6, 387–413.

    Article  Google Scholar 

  39. Tomic, I., & Bays, P.M. (2018). Internal but not external noise frees working memory resources. PLos Computational Biology, 14(10), e1006488.

    Article  Google Scholar 

  40. Trifonov, M.I. (1994). New insight into internal noise in the psychophysical model for visual signal detection. SPIE, 2166, 32–43.

    Google Scholar 

  41. Vilidaite, G., & Baker, D.H. (2017). Individual differences in internal noise are consistent across two measurement techniques. Vision Research, 141, 30–39.

    Article  Google Scholar 

  42. Xue, S. (1996). Optimization of template selection for signal detection systems with additive internal noise. Thesis, Rochester Institute of Technology.

Download references

Acknowledgments

This study was funded by Agence nationale de la recherche (grant numbers ANR-16-CE28-0016, ANR-19-CE28-0010-01 and ANR-17-EURE-0017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Neri.

Ethics declarations

Conflict of interests

Author declares no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Action Editor: Destexhe and Victor

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neri, P. Optimal templates for signal extraction by noisy ideal detectors and human observers. J Comput Neurosci 49, 1–20 (2021). https://doi.org/10.1007/s10827-020-00768-z

Download citation

Keywords

  • Signal detection theory
  • Calculus of variations
  • Psychophysics
  • Reverse correlation
  • Internal noise
  • Template matching
  • Metacognition
  • Memory encoding