Electrodiffusion models of synaptic potentials in dendritic spines

Abstract

The biophysical properties of dendritic spines play a critical role in neuronal integration but are still poorly understood, due to experimental difficulties in accessing them. Spine biophysics has been traditionally explored using theoretical models based on cable theory. However, cable theory generally assumes that concentration changes associated with ionic currents are negligible and, therefore, ignores electrodiffusion, i.e. the interaction between electric fields and ionic diffusion. This assumption, while true for large neuronal compartments, could be incorrect when applied to femto-liter size structures such as dendritic spines. To extend cable theory and explore electrodiffusion effects, we use here the Poisson (P) and Nernst-Planck (NP) equations, which relate electric field to charge and Fick’s law of diffusion, to model ion concentration dynamics in spines receiving excitatory synaptic potentials (EPSPs). We use experimentally measured voltage transients from spines with nanoelectrodes to explore these dynamics with realistic parameters. We find that (i) passive diffusion and electrodiffusion jointly affect the dynamics of spine EPSPs; (ii) spine geometry plays a key role in shaping EPSPs; and, (iii) the spine-neck resistance dynamically decreases during EPSPs, leading to short-term synaptic facilitation. Our formulation, which complements and extends cable theory, can be easily adapted to model ionic biophysics in other nanoscale bio-compartments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Harris, K. M., & Kater, S. (1994). Dendritic spines: Cellular specializations imparting both stability and flexibility to synaptic function. Annual Review of Neuroscience, 17(1), 341–371.

    Article  CAS  PubMed  Google Scholar 

  2. Yuste, R. (2011). Dendritic spines and distributed circuits. Neuron, 71(5), 772–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yuste, R. (2010). Dendritic Spines. Cambridge: MIT Press.

    Google Scholar 

  4. Yuste, R., & Majewska, A. (2001). On the function of dendritic spines. Neuroscientist, 7(5), 387–395.

    Article  CAS  PubMed  Google Scholar 

  5. Yang, G., Pan, F., & Gan, W.-B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 462(7275), 920–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stuart, G. J., & Spruston, N. (2015). Dendritic integration: 60 years of progress. Nature Neuroscience, 18(12), 1713–1721.

    Article  CAS  PubMed  Google Scholar 

  7. Popovic, M. A., Carnevale, N., Rozsa, B., & Zecevic, D. (2015). Electrical behaviour of dendritic spines as revealed by voltage imaging. Nature Communications, 6, 8436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jayant, K., Hirtz, J. J., Plante, I. J. L., Tsai, D. M., de Boer, W. D. A. M., Semonche, A., Peterka, D. S., Owen, J. S., Sahin, O., Shepard, K. L., & Yuste, R. (2017). Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nature Nanotechnology, 12(4), 335–342.

    Article  CAS  PubMed  Google Scholar 

  9. Grunditz, A., Holbro, N., Tian, L., Zuo, Y., & Oertner, T. G. (2008). Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(50), 13457–13466.

    Article  CAS  Google Scholar 

  10. Acker, C. D., Hoyos, E., & Loew, L. M. (2016). EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons. eNeuro, 3(2). https://doi.org/10.1523/ENEURO.0050-15.2016.

  11. Harnett, M. T., Makara, J. K., Spruston, N., Kath, W. L., & Magee, J. C. (2012). Synaptic amplification by dendritic spines enhances input cooperativity. Nature, 491, 599–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cartailler, J., et al.. (2017a). Deconvolution of voltage sensor time series and electro-diffusion modeling of synaptic input in dendritic spines. Neuron, . (in press).

  13. Svoboda, K., Tank, D. W., & Denk, W. (1996). Direct measurement of coupling between dendritic spines and shafts. Science, 272, 716–719.

    Article  CAS  PubMed  Google Scholar 

  14. Tønnesen, J., Katona, G., Rózsa, B., & Nägerl, U. V. (2014). Spine neck plasticity regulates compartmentalization of synapses. Nature Neuroscience, 17(5), 678–685.

    Article  CAS  PubMed  Google Scholar 

  15. Beaulieu-Laroche, L., Harnett, M.T. (2017). Dendritic Spines prevent synaptic voltage clamp. Neuron.

  16. Araya, R., Jiang, J., Eisenthal, K. B., & Yuste, R. (2006). The spine neck filters membrane potentials. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17961–17966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwon, T., Sakamoto, M., Peterka, D. S., & Yuste, R. (2017). Attenuation of synaptic potentials in dendritic Spines. Cell Reports, 20(5), 1100–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arellano, J. I., Benavides-Piccione, R., Defelipe, J., & Yuste, R. (2007). Ultrastructure of dendritic spines: Correlation between synaptic and spine morphologies. Frontiers in Neuroscience, 1(1), 131–143.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Segev, I., & Rall, W. (1998). Excitable dendrites and spines: Earlier theoretical insights elucidate recent direct observations. Trends in Neurosciences, 21(11), 453–460.

    Article  CAS  PubMed  Google Scholar 

  20. Koch, C. (1984). Cable theory in neurons with active, linearized membranes. Biological Cybernetics, 50(1), 15–33.

    Article  CAS  PubMed  Google Scholar 

  21. Koch, C., & Poggio, T. (1983). Electrical properties of dendritic spines. TINS, 6, 80–83.

    Google Scholar 

  22. Koch, C., Segev, I. (1998). Methods in neuronal modeling: from ions to networks. MIT press.

  23. Jack, J. J. B., Noble, D., & Tsien, R. W. (1975). Electric current flow in excitable cells. London: Oxford University Press.

    Google Scholar 

  24. Bloodgood, B. L., & Sabatini, B. L. (2005). Neuronal activity regulates diffusion across the neck of dendritic spines. Science, 310, 866–869.

    Article  CAS  PubMed  Google Scholar 

  25. Miyazaki, K., Ross, W. N.. (2017). Sodium dynamics in pyramidal neuron dendritic spines: synaptically evoked entry predominantly through AMPA receptors and removal by diffusion. Journal of Neuroscience, p. 1758–17.

  26. Schuss, Z., Singer, A., & Holcman, D. (2007). The narrow escape problem for diffusion in cellular microdomains. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16098–16103.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kushmerick, M., & Podolsky, R. (1969). Ionic mobility in muscle cells. Science, 166(3910), 1297–1298.

    Article  CAS  PubMed  Google Scholar 

  28. Qian, N., & Sejnowski, T. (1989). An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biological Cybernetics, 62(1), 1–15.

    Article  Google Scholar 

  29. Savtchenko, L. P., Poo, M. M., & Rusakov, D. A. (2017). Electrodiffusion phenomena in neuroscience: A neglected companion. Nature Reviews. Neuroscience, 18(10), 598–612.

    Article  CAS  PubMed  Google Scholar 

  30. Sylantyev, S., Savtchenko, L. P., Ermolyuk, Y., Michaluk, P., & Rusakov, D. A. (2013). Spike-driven glutamate electrodiffusion triggers synaptic potentiation via a homer-dependent mGluR-NMDAR link. Neuron, 77(3), 528–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sylantyev, S., Savtchenko, L. P., Niu, Y. P., Ivanov, A. I., Jensen, T. P., Kullmann, D. M., Xiao, M. Y., & Rusakov, D. A. (2008). Electric fields due to synaptic currents sharpen excitatory transmission. Science, 319(5871), 1845–1849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schuss, Z., Nadler, B., & Eisenberg, R. S. (2001). Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Physical Review E, 64(3), 036116.

    Article  CAS  Google Scholar 

  33. Holcman, D., & Yuste, R. (2015). The new nanophysiology: Regulation of ionic flow in neuronal subcompartments. Nature Reviews. Neuroscience, 16(11), 685–692.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, D., Lear, J., & Eisenberg, B. (1997). Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophysical Journal, 72(1), 97–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Halnes, G., Mäki-Marttunen, T., Keller, D., Pettersen, K. H., Andreassen, O. A., & Einevoll, G. T. (2016). Effect of ionic diffusion on extracellular potentials in neural tissue. PLoS Computational Biology, 12(11), e1005193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pods, J., Schonke, J., & Bastian, P. (2013). Electrodiffusion models of neurons and extracellular space using the Poisson-Nernst-Planck equations--numerical simulation of the intra- and extracellular potential for an axon model. Biophysical Journal, 105(1), 242–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jayant, K., et al. (2013). Programmable ion-sensitive transistor interfaces. II. Biomolecular sensing and manipulation. Physical Review E, 88(1), 012802.

    Article  CAS  Google Scholar 

  38. Jayant, K., et al. (2014). Programmable ion-sensitive transistor interfaces. III. Design considerations, signal generation, and sensitivity enhancement. Physical Review E, 89(5), 052817.

    Article  CAS  Google Scholar 

  39. Tsay, D., & Yuste, R. (2004). On the electrical function of dendritic spines. Trends in Neurosciences, 27(2), 77–83.

    Article  CAS  PubMed  Google Scholar 

  40. Tovar, R.K., Westbrook, G. L. (2012). Ligand-Gated Ion Channels, in Cell Physiology Source Book (Fourth Edition).

  41. Kosińska, I., et al. (2008). Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E, 77(3), 031131.

    Article  CAS  Google Scholar 

  42. Goldman, D. E. (1943). Potential, impedance, and rectification in membranes. The Journal of General Physiology, 27(1), 37–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singer, A., & Norbury, J. (2009). A Poisson–Nernst–Planck model for biological ion channels—An asymptotic analysis in a three-dimensional narrow funnel. SIAM Journal on Applied Mathematics, 70(3), 949–968.

    Article  Google Scholar 

  44. Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839–883.

    Article  CAS  Google Scholar 

  45. Yuste, R. (2013). Electrical compartmentalization in dendritic spines. Annual Review of Neuroscience, 36, 429–449.

    Article  CAS  PubMed  Google Scholar 

  46. Bourne, J. N., & Harris, K. M. (2008). Balancing structure and function at hippocampal dendritic Spines. Annual Review of Neuroscience, 31, 37–67.

    Article  CAS  Google Scholar 

  47. Ngo-Anh, T., et al. (2005). SK channels and NMDA receptors form a ca(2+)-mediated feedback loop in dendritic spines. Nature Neuroscience, 8, 642–649.

    Article  CAS  PubMed  Google Scholar 

  48. Delpire, E., & Staley, K. J. (2014). Novel determinants of the neuronal cl(−) concentration. The Journal of Physiology, 592(19), 4099–4114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cartailler, J., Schuss, Z., & Holcman, D. (2017b). Electrostatics of non-neutral biological microdomains. Scientific Reports, 7(1), 11269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cartailler, J., Schuss, Z., & Holcman, D. (2017c). Analysis of the Poisson–Nernst–Planck equation in a ball for modeling the voltage–current relation in neurobiological microdomains. Physica D: Nonlinear Phenomena, 339, 39–48.

    Article  Google Scholar 

  51. Zhou, T., Ming, Y., Perry, S. F., & Tatic-Lucic, S. (2016). Estimation of the physical properties of neurons and glial cells using dielectrophoresis crossover frequency. Journal of Biological Physics, 42(4), 571–586.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIMH (R01MH101218, R01MH100561) and the NINDS (R01NS110422). This material is also based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under contract number W911NF-12-1-0594 (MURI). T.L. was partly supported by the Fondation pour la Recherche Médicale and the Philippe foundation. K.J was supported by the Kavli Institute of Brain Science at Columbia.

Author information

Affiliations

Authors

Contributions

T.L. and R.Y. conceived the project. T.L performed the modeling and analysis. K.J assisted with model development and analysis. T.L and K.J wrote the manuscript. R.Y assembled and directed the team, provided guidance, funding, and edited the manuscript.

Corresponding author

Correspondence to Thibault Lagache.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Action Editor: Upinder Singh Bhalla

Electronic supplementary material

SI includes detailed mathematical derivations of the equations presented here in this manuscript.

ESM 1

(PDF 940 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lagache, T., Jayant, K. & Yuste, R. Electrodiffusion models of synaptic potentials in dendritic spines. J Comput Neurosci 47, 77–89 (2019). https://doi.org/10.1007/s10827-019-00725-5

Download citation

Keywords

  • Synaptic transmission
  • Dendritic spines
  • Electrodiffusion
  • Asymptotic analysis
  • Coarse-grained model
  • Electrophysiology
  • Simulations