Neural network model of an amphibian ventilatory central pattern generator

Abstract

The neuronal multiunit model presented here is a formal model of the central pattern generator (CPG) of the amphibian ventilatory neural network, inspired by experimental data from Pelophylax ridibundus. The kernel of the CPG consists of three pacemakers and two follower neurons (buccal and lung respectively). This kernel is connected to a chain of excitatory and inhibitory neurons organized in loops. Simulations are performed with Izhikevich-type neurons. When driven by the buccal follower, the excitatory neurons transmit and reorganize the follower activity pattern along the chain, and when driven by the lung follower, the excitatory and inhibitory neurons of the chain fire in synchrony. The additive effects of synaptic inputs from the pacemakers on the buccal follower account for (1) the low frequency buccal rhythm, (2) the intra-burst high frequency oscillations, and (3) the episodic lung activity. Chemosensitivity to acidosis is implemented by an increase in the firing frequency of one of the pacemakers. This frequency increase leads to both a decrease in the buccal burst frequency and an increase in the lung episode frequency. The rhythmogenic properties of the model are robust against synaptic noise and pacemaker jitter. To validate the rhythm and pattern genesis of this formal CPG, neurograms were built from simulated motoneuron activity, and compared with experimental neurograms. The basic principles of our model account for several experimental observations, and we suggest that these principles may be generic for amphibian ventilation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Abusnaina, A.A., & Abdullah, R. (2014). Spiking neuron models: a review. JDCTA, 8(3), 14–21.

    Google Scholar 

  2. Anastassiou, C.A., Perin, R., Buzsaki, G., Markram, H., Koch, C. (2015). Cell type- and activity-dependent extracellular correlates of intracellular spiking. Journal of Neurophysiology, 114(1), 608–23.

    Article  Google Scholar 

  3. Anderson, T.M., & Ramirez, J.M. (2017). Respiratory rhythm generation: triple oscillator hypothesis. F1000Res, 6, 139.

    Article  Google Scholar 

  4. Baghdadwala, M.I., Duchcherer, M., Trask, W.M., Gray, P.A., Wilson, R.J.A. (2016). Diving into the mammalian swamp of respiratory rhythm generation with the bullfrog. Respiratory Physiology & Neurobiology, 224, 37–51.

    Article  Google Scholar 

  5. Ballantyne, D., & Scheid, P. (2000). Mammalian brainstem chemosensitive neurones: linking them to respiration in vitro. The Journal of Physiology, 525(3), 567–77.

    CAS  Article  Google Scholar 

  6. Bose, A., Lewis, T., Wilson, R. (2005). Two-oscillator model of ventilatory rhythmogenesis in the frog. Neurocomputating, 65-66, 751–777.

    Article  Google Scholar 

  7. Brunel, N., Chance, F.S., Fourcaud, N., Abbott, L.F. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 5 86(10), 2186–9.

    Article  Google Scholar 

  8. Burggren, W.W., & West, N.H. (1982). Changing respiratory importance of gills, lungs and skin during metamorphosis in the bullfrog Rana catesbeiana. Respiration Physiology, 47(2), 151–64.

    CAS  Article  Google Scholar 

  9. Burggren, W., & Doyle, M. (1986). Ontogeny of regulation of gill and lung ventilation in the bullfrog, Rana catesbeiana. Respiration Physiology, 66, 279–291.

    CAS  Article  Google Scholar 

  10. Carroll, M.S., & Ramirez, J.M. (2013). Cycle-by-cycle assembly of respiratory network activity is dynamic and stochastic. Journal of Neurophysiology, 109(2), 296–305.

    Article  Google Scholar 

  11. Champagnat, J.J., & Fortin, G. (1997). Primordial respiratory-like rhythm generation in the vertebrate embryo. Trends in Neurosciences, 20(3), 119–124.

    CAS  Article  Google Scholar 

  12. Diekman, C.O., Thomas, P.J., Wilson, C.G. (2017). Eupnea, tachypnea, and autoresuscitation in a closed-loop respiratory control model. Journal of Neurophysiology, 118.4, 2194–2215.

    Article  Google Scholar 

  13. Duchcherer, M., Baghdadwala, M.I., Paramonov, J., Wilson, R.J. (2013). Localization of essential rhombomeres for respiratory rhythm generation in bullfrog tadpoles using a binary search algorithm: Rhombomere 7 is essential for the gill rhythm and suppresses lung bursts before metamorphosis. Developmental Neurobiology, 73(12), 888–98.

    Article  Google Scholar 

  14. Feldman, J.L., & Smith, J.C. (1989). Cellular mechanisms underlying modulation of breathing pattern in mammals. Annals of the New York Academy of Sciences, 563, 114–130.

    CAS  Article  Google Scholar 

  15. Feldman, J.L., & Del Negro, C.A. (2006). Looking for inspiration: New perspectives on respiratory rhythm. Nature Reviews Neuroscience, 7, 232–242.

    CAS  Article  Google Scholar 

  16. Galante, R.J., Kubin, L., Fishman, A.P., Pack, A.I. (1996). Role of chloride-mediated inhibition in respiratory rhythmogenesis in an in vitro brainstem of tadpole, Rana catesbeiana. Journal of Physiology, 492, 545–558.

    CAS  Article  Google Scholar 

  17. Gargaglioni, L.H., & Milsom, W.K. (2007). Control of breathing in anuran amphibians. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology, 147(3), 665–84.

    Article  Google Scholar 

  18. Gdovin, M.J., Torgerson, C.S., Remmers, J.E. (1998). Neurorespiratory pattern of gill and lung ventilation in the decerebrate spontaneously breathing tadpole. Respiration Physiology, 113, 135–146.

    CAS  Article  Google Scholar 

  19. Gdovin, M.J., Torgerson, C.S., Remmers, J.E. (1999). The fictively breathing tadpole brainstem preparation as a model for the development of respiratory pattern generation and central chemoreception. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 124, 275–286.

    CAS  Article  Google Scholar 

  20. Guerrier, C., Hayes, J.A., Fortin, G., Holcman, D. (2015). Robust network oscillations during mammalian respiratory rhythm generation driven by synaptic dynamics. Proceedings of the National Academy of Sciences of the United States of America, 112(31), 9728–9733.

    CAS  Article  Google Scholar 

  21. Horcholle-Bossavit, G., & Quenet, B. (2009). Neural model of frog ventilatory rhythmogenesis. Biosystems, 97, 35–43.

    Article  Google Scholar 

  22. Ibarz, B., Casado, J.M., Sanjuan, M.A.F. (2011). Map-based models in neuronal dynamics. Physics Reports, 501, 1–74.

    CAS  Article  Google Scholar 

  23. Ijspeert, A.J. (2001). A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biological Cybernetics, 84(5), 331–48.

    CAS  Article  Google Scholar 

  24. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315(5817), 1416–20.

    CAS  Article  Google Scholar 

  25. Izhikevich, E.M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.

    CAS  Article  Google Scholar 

  26. Izhikevich, E.M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15, 1063– 1070.

    Article  Google Scholar 

  27. Kinkead, R. (2009). Phylogenetic trends in respiratory rhythmogenesis: insights from ectothermic vertebrates. Respiratory Physiology & Neurobiology, 168(1-2), 39–48.

    Article  Google Scholar 

  28. Klingler, M.J., & Hedrick, M.S. (2013). Evidence for rhombomeric organization of multiple respiratory oscillators in the bullfrog brainstem. Respiratory Physiology & Neurobiology, 186(1), 7–15.

    Article  Google Scholar 

  29. Knusel, J., Bicanski, A., Ryczko, D., Cabelguen, J.M., Ijspeert, A.J. (2013). A salamander’s flexible spinal network for locomotion, modeled at two levels of abstraction. Integrative and Comparative Biology, 53(2), 269–82.

    Article  Google Scholar 

  30. Lal, A., Oku, Y., Someya, H., Miwakeichi, F., Tamura, Y. (2016). Emergent network topology within the respiratory rhythm-generating kernel evolved in silico. PLoS One, 11(5), 1–32.

    Article  Google Scholar 

  31. McLean, H.A., Kimura, N., Kogo, N., Perry, S.F., Remmers, J.E. (1995). Fictive respiratory rhythm in the isolated brainstem of frogs. Journal of Comparative Physiology A, 176, 703–713.

    CAS  Article  Google Scholar 

  32. Molkov, Y.I., Rubin, J.E., Rybak, I.A., Smith, J.C. (2017). Computational models of the neural control of breathing. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 9(2), 1–22.

    Google Scholar 

  33. Oku, Y., Kimurab, N., Masumiyaa, H., Okadac, Y. (2008). Spatiotemporal organization of frog respiratory neurons visualized on the ventral medullary surface. Respiratory Physiology & Neurobiology, 161, 281–290.

    Article  Google Scholar 

  34. Onimaru, H., Ballanyi, K., Homma, I. (2003). Contribution of Ca2+-dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro. The Journal of Physiology (London), 552, 727–741.

    CAS  Article  Google Scholar 

  35. Perkel, D.H., Schulman, J.H., Bullock, T.H., Moore, G.P., Segundo, J.P. (1964). Pacemaker neurons: effects of regularly spaced synaptic input. Science, 145(3627), 61–3.

    CAS  Article  Google Scholar 

  36. Plonsey, R. (1977). Action potential sources and their volume conductor fields. Proceedings of the IEEE, 65, 601–611.

    Article  Google Scholar 

  37. Putnam, R.W., Filosa, J.A., Ritucci, N.A. (2004). Cellular mechanisms involved in CO2 and acid signaling in chemosensitive neurons. American Journal of Physiology - Cellular Physiology, 287, C1493–C1526.

    CAS  Article  Google Scholar 

  38. Quenet, B., Straus, C., Fiamma, M.N., Rivals, I., Similowski, T., Horcholle-Bossavit, G. (2014). New insights in gill/buccal rhythm spiking activity and CO2 sensitivity in pre- and post-metamorphic tadpoles Pelophylax ridibundus. Respiratory Physiology & Neurobiology, 191, 26–37.

    Article  Google Scholar 

  39. Rigatto, H., Rehan, V., Lemke, R.P., Idiong, N., Hussain, A., Cates, D. (2000). Respiratory pacemaker cells responsive to CO2 in the upper medulla: dose response and effects of mediators. Pediatric Pulmonology, 30(5), 359–67.

    CAS  Article  Google Scholar 

  40. Roth, A., & Van Rossum, R.C.W. (2009). Computation Modeling Methods for Neuroscientists. Cambridge: MIT Press.

    Google Scholar 

  41. Rubin, J.E., Bacak, B.J., Molkov, Y.I., Shevtsova, N.A., Smith, J.C., Rybak, I.A. (2011). Interacting oscillations in neural control of breathing: modeling and qualitative analysis. Journal of Computational Neuroscience, 30(3), 607–32.

    Article  Google Scholar 

  42. Sakakibara, Y. (1984). The pattern of respiratory nerve activity in the bullfrog. The Japanese Journal of Physiology, 34, 269– 282.

    CAS  Article  Google Scholar 

  43. Sakakibara, Y. (1984). Trigeminal nerve activity and buccal pressure as an index of total inspiratory activity in the bullfrog. Japanese Journal of Physiology, 34, 827–838.

    CAS  Article  Google Scholar 

  44. Santin, J.M., & Hartzler, L.K. (2013). Respiratory signaling of locus coeruleus neurons during hypercapnic acidosis in the bullfrog, Lithobates catesbeianus. Respiratory Physiology & Neurobiology, 185(3), 553–6.

    CAS  Article  Google Scholar 

  45. Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., Feldman, J.L. (1991). Pre-boktzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science, 254, 726–729.

    CAS  Article  Google Scholar 

  46. Straus, C., Wilson, R.J.A., Remmers, J.E. (2000). Developmental disinhibition: turning off inhibition turns on breathing in vertebrates. Journal of Neurobiology, 45, 75–83.

    CAS  Article  Google Scholar 

  47. Straus, C., Wilson, R.J.A., Tezenas du Montcel, S., Remmers, J.E. (2000). Baclofen eliminates cluster lung breathing of the tadpole brainstem, in vitro. Neuroscience Letters, 292, 13–16.

    CAS  Article  Google Scholar 

  48. Straus, C., Samara, Z., Fiamma, M.N., Bautin, N., Ranohavimparany, A., Le Coz, P., Golmard, J.L., Darré, P., Zelter, M., Poon, C.S., Similowski, T. (2011). Effects of maturation and acidosis on the chaos-like complexity of the neural respiratory output in the isolated brainstem of the tadpole, Rana esculenta. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 300(5), 1163–74.

    Article  Google Scholar 

  49. Sundin, L., Burleson, M.L., Sanchez, A.P., Amin-Naves, J., Kinkead, R., Gargaglioni, L.H., Hartzler, L.K., Wiemann, M., Kumar, P., Glass, M.L. (2007). Respiratory chemoreceptor function in vertebrates comparative and evolutionary aspects. Integrative and Comparative Biology, 47(4), 592–600.

    CAS  Article  Google Scholar 

  50. Taylor, B.E., Harris, M.B., Coates, E.L., Gdovin, M.J., Leiter, J.C. (2003). Central CO2 chemoreception in developing bullfrogs: anomalous response to acetazolamide. Journal of Applied Physiology, 94, 1204–12.

    CAS  Article  Google Scholar 

  51. Torgerson, C.S., Gdovin, M.J., Remmers, J.E. (1997). The ontogeny of central chemoreception during fictive gill and lung ventilation of an in vitro brainstem preparation of Rana catesbeiana. The Journal of Experimental Biology, 299, 2063–2072.

    Google Scholar 

  52. Vasilakos, K., Wilson, R.J., Kimura, N., Remmers, J.E. (2004). Ancient gill and lung oscillators may generate the respiratory rhythm of frogs and rats. Journal of Neurobiology, 62, 369–385.

    Article  Google Scholar 

  53. Vasilakos, K., Kimura, N., Wilson, R.J., Remmers, J.E. (2006). Lung and buccal ventilation in the frog: uncoupling coupled oscillators. Physiological and Biochemical Zoology, 79(6), 1010–8.

    Article  Google Scholar 

  54. Vinaya, M., & Ignatius, R.P. (2018). Effect of lévy noise on the networks of Izhikevich neurons. Nonlinear Dynamics, 94, 1133–1150.

    Article  Google Scholar 

  55. Wilson, R.J.A., Straus, C., Remmers, J.E. (1999). Efficacy of a low volume recirculating superfusion chamber for long term administration of expensive drugs and dyes. Journal of Neuroscience Methods, 87, 175–184.

    CAS  Article  Google Scholar 

  56. Wittmeier, S., Song, G., Duffin, J., Poon, C.S. (2008). Pacemakers handshake synchronization mechanism of mammalian respiratory rhythmogenesis. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 18000–5.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Jeremy Cabessa for his critical reading of the paper and Douglas Carnall for his help with English style.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brigitte Quenet.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Action Editor: Frances K. Skinner

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 161 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horcholle-Bossavit, G., Quenet, B. Neural network model of an amphibian ventilatory central pattern generator. J Comput Neurosci 46, 299–320 (2019). https://doi.org/10.1007/s10827-019-00718-4

Download citation

Keywords

  • Ventilatory CPG model
  • Metamorphosis
  • Neurogram simulation
  • Pacemakers
  • Amphibian