Journal of Computational Neuroscience

, Volume 42, Issue 3, pp 257–273 | Cite as

Mathematical investigation of IP3-dependent calcium dynamics in astrocytes

  • Gregory Handy
  • Marsa Taheri
  • John A. White
  • Alla BorisyukEmail author


We study evoked calcium dynamics in astrocytes, a major cell type in the mammalian brain. Experimental evidence has shown that such dynamics are highly variable between different trials, cells, and cell subcompartments. Here we present a qualitative analysis of a recent mathematical model of astrocyte calcium responses. We show how the major response types are generated in the model as a result of the underlying bifurcation structure. By varying key channel parameters, mimicking blockers used by experimentalists, we manipulate this underlying bifurcation structure and predict how the distributions of responses can change. We find that store-operated calcium channels, plasma membrane bound channels with little activity during calcium transients, have a surprisingly strong effect, underscoring the importance of considering these channels in both experiments and mathematical settings. Variation in the maximum flow in different calcium channels is also shown to determine the range of stable oscillations, as well as set the range of frequencies of the oscillations. Further, by conducting a randomized search through the parameter space and recording the resulting calcium responses, we create a database that can be used by experimentalists to help estimate the underlying channel distribution of their cells.


Astrocytes Calcium response Hopf Bifurcation Store operated calcium channels 



This work was supported by the National Science Foundation (DMS-1022945 to A. Borisyuk; DMS-1148230, to A. Borisyuk and G. Handy) and the National Institutes of Health (R01 NS078331, to J.A. White and K.S. Wilcox).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest


  1. Aguado, F., Espinosa-Parrilla, J., Carmona, M., & Soriano, E. (2002). Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. The Journal of Neuroscience, 22(21), 9430–9444.PubMedGoogle Scholar
  2. Agulhon, C., Sun, M., Murphy, T., Myers, T., Lauderdale, K., & Fiacco, T. (2012). Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Frontiers in Pharmacology, 3, 139.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amiri, M., Bahrami, R., & Janahmadi, M. (2012). Functional contributions of astrocytes in synchronization of a neuronal network model. Journal of Theoretical Biology, 292, 60–70.CrossRefPubMedGoogle Scholar
  4. Anderson, C., & Swanson, R.A. (2000). Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia, 5, 81–94.Google Scholar
  5. Bartlett, P., Metzger, W., Gaspers, L., & Thomas, A. (2015). Differential regulation of multiple steps in inositol 1,4,5-trisphosphate signaling by protein kinase c shapes hormone-stimulated ca2+ oscillations. The Journal of Biological Chemistry, 290(30), 18519–18533.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B.L., Pozzan, T., & Volterra, A. (1998). Prostanglandins stimulate calcium dependent glutamate release from astrocytes. Nature, 391, 281–285.CrossRefPubMedGoogle Scholar
  7. Cao, P., Tan, X., Donovan, G., Sanderson, M., & Sneyd, J. (2014). A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells. PLOS Computational Biology, 10(8), e1003783.Google Scholar
  8. Courjaret, R., & Machaca, K. (2014). Mid-range ca2+ signalling mediated by functional coupling between store-operated ca2+ entry and ip3-dependent ca2+ release. Nature Communications, 5(3916). doi: 10.1038/ncomms4916.
  9. Croft, W., Reusch, K., Tilunaite, A., Russell, N., Thul, R., & Bellamy, T. (2016). Probabilistic encoding of stimulus strength in astrocyte global calcium signals. Glia, 64(4), 537–552.CrossRefPubMedGoogle Scholar
  10. Croisier, H., Tan, X., Perez-Zoghbi, J., Sanderson, M., Sneyd, J., & Brook, B. (2013). Activation of store-operated calcium entry in airway smooth muscle cells: insight from a mathematical model. PLOS One, 8(7), e69598.Google Scholar
  11. de Lanerolle, N., Lee, T., & Spencer, D.D. (2010). Astrocytes and epilepsy. Neurotherapeutics, 7(4), 424–438.CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Pittà, M., & Brunel, N. (2016). Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plasticity, 2016.Google Scholar
  13. De Pittà, M., Goldberg, M., Volman, V., Berry, H., & Ben-Jacob, E. (2009). Glutamate regulation of calcium and ip3 oscillating and pulsating dynamics in astrocytes. Journal of Biological Physics, 35, 383–411.CrossRefPubMedPubMedCentralGoogle Scholar
  14. De Young, G., & Keizer, J. (1992). A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in ca2+ concentration. Proceedings of the National Academy of Sciences, 89, 9895–9899.CrossRefGoogle Scholar
  15. Di Garbo, A., Barbi, M., Chillemi, S., Alloisio, S., & Nobile, M. (2007). Calcium signalling in astrocytes and modulation of neural activity. BioSystems, 89(1–3), 74–83.CrossRefPubMedGoogle Scholar
  16. Dupont, G. (2014). Modeling the intracellular organization of calcium signaling. WIREs Systems Biology and Medicine, 6, 227–237.CrossRefPubMedGoogle Scholar
  17. Dupont, G., Falcke, M., Kirk, V., & Sneyd, J. (2016). Models of Calcium Signalling. Springer International Publishing.Google Scholar
  18. Falcke, M. (2004). Reading the patterns in living cells-the physics of ca2+ signaling. Advances in Physics, 53, 255–440.CrossRefGoogle Scholar
  19. Fujita, T., Chen, M.J., Li, B., Smith, N.A., Peng, W., Sun, W., Toner, M.J., Kress, B.T., Wang, L., Benraiss, A., Takano, T., Wang, S., & Nedergaard, M. (2014). Neuronal transgene expression in dominant-negative snare mice. The Journal of Neuroscience, 34(50), 16594–16604.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gatto, C., & Milanick, M.A. (1993). Inhibition of the red blood cell calcium pump by eosin and other flurescein analogues. The American Journal of Physiology, 264(6 Pt 1), C1577–C1586.PubMedGoogle Scholar
  21. Haydon, P.G. (2001). Glia: listening and talking to the synapse. Nature Reviews, 2, 185–193.CrossRefPubMedGoogle Scholar
  22. Haydon, P.G., & Nedergaard, M. (2015). How do astrocytes participate in neural plasticity. Cold Spring Harbor Perspectives in Biology, 7, a020438.Google Scholar
  23. Hines, M., Morse, T., Migliore, M., Carnevale, N., & Shepherd, G.M. (2004). Modeldb: a database to support computational neuroscience. Journal of Computational Neuroscience, 17(50), 7–11.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Höfer, T., Venance, L., & Giaume, C. (2002). Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. The Journal of Neuroscience, 22, 4850–4859.PubMedGoogle Scholar
  25. Jousset, H., Frieden, M., & Demaurex, N. (2007). Stim1 knockdown reveals that store-operated ca2+ channels located close to sarco/endoplasmic ca2+ atpases (serca) pumps silently refill the endoplasmic reticulum. Journal of Biological Chemistry, 282 (15), 11456–11464.CrossRefPubMedGoogle Scholar
  26. Kantevari, S., Gordon, G., MacVicar, B., & Ellis-Davies, G.C.R. (2011). A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates. Nature Protocols, 6, 327–337.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Keener, J., & Sneyd, J. (2009). Mathematical physiology. Springer Science + Business Media.Google Scholar
  28. Larsen, B.R., Assentoft, M., Cotrina, M.L., Hua, S., Nedergaard, M., Kaila, K., Voipio, J., & MacAulay, N. (2014). Contributions of the na + /k + -atpase, nkcc1, and kir4.1 to hippocampal k + clearance and volume responses. Glia, 62(4), 608–622.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lavrentovich, M., & Hemkin, S. (2008). A mathematical model of spontaneous calcium(ii) oscillations in astrocytes. Journal of Theoretical Biology, 251, 553–560.CrossRefPubMedGoogle Scholar
  30. Li, Y.-X., & Rinzel, J. (1996). Equations for insp3 receptor-mediated ca2+ oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism. Journal of Theoretical Biology, 166, 461–473.CrossRefGoogle Scholar
  31. Liu, Q., Xum, Q., Kangm, J., & Nedergaard, M. (2004). Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biology, 1(4), 307–316.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liu, W., Tang, F., & Chen, J. (2010). Designing dynamical output feedback controllers for store-operated ca2+ entry. Mathematical BioSciences, 228, 110–118.CrossRefPubMedGoogle Scholar
  33. Malarkey, E., Ni, Y., & Parpura, V. (2008). Ca2+ entry through trpc1 channels contributes to intracellular ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia, 56, 821–835.CrossRefPubMedGoogle Scholar
  34. McKay, M., Beckman, R., & Conover, W. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code technometrics. Glia, 21(2), 239–245.Google Scholar
  35. Nedergaard, M., & Verkhratsky, A. (2012). Artifact versus reality–how astrocytes contribute to synaptic events. Glia, 60, 1013–1023.Google Scholar
  36. Nedergaard, M., Ransom, B.R., & Goldman, S.A. (2003). New roles for astrocytes: redefining the functional architecture of the brain. Trends Neuroscience, 26, 523–530.CrossRefGoogle Scholar
  37. Nezu, A., Tanimura, A., Morita, T., & Tojyo, Y. (2010). Use of fluorescence resonance energy visualization of ins(1,4,5)p3 dynamics in living cells: two distinct pathways for ins(1,4,5)p3 generation following mechanical stimulation of hsy-ea1 cells. Journal of Cell Science, 123, 2292–2298.CrossRefPubMedGoogle Scholar
  38. Pasti, L., Pozzan, T., & Carmignoto, G. (1995). Long-lasting changes of calcium oscillations in astrocytes. a new form of glutamate-mediated plasticity. Journal of Cell Science, 270(25), 15203–15210.Google Scholar
  39. Plenge-Tellechea, F., Soler, F., & Fernandez-Belda, F. (1997). On the inhibition mechanism of sarcoplasmic or endoplasmic reticulum ca21-atpases by cyclopiazonic acid. Journal of Biological Chemistry, 272(5), 2794–2800.CrossRefPubMedGoogle Scholar
  40. Reato, D., Cammarota, M., Parra, L., & Carmignoto, G. (2012). Computational model of neuron-astrocyte interactions during focal seizure generation. Frontiers in Computational Neuroscience, 6(81). doi: 10.3389/fncom.2012.00081.
  41. Ridet, J., Malhotra, S.K., Privat, A., & Gage, F.H. (1997). Reactive astrocytes: cellular and molecular cues to biological function. Trends in Neuroscience, 20(12), 570–577.CrossRefGoogle Scholar
  42. Roos, J., DiGregorio, P., Yeromin, A., Ohlsen, K., Lioudyno, M., Zhang, S., Safrina, O., Kozak, J., Wagner, S., Cahalan, M., Veliçelebi, G., & Stauderman, K. (2005). Stim1, an essential and conserved component of store-operated ca2+ channel function. Journal of Cell Biology, 169(3), 435–445.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shigetomi, E., Tong, X., Kwan, K., Corey, D., & Khakh, B. (2012). Trpa1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through gat-3. Nature Neuroscience, 15(1), 70–80.Google Scholar
  44. Singh, P., Mhaka, A.M., Christensen, S.B., Gray, J.J., Denmeade, S.R., & Isaacs, J.T. (2005). Applying linear interaction energy method for rational design of noncompetitive allosteric inhibitors of the sarco- and endoplasmic reticulum calcium-atpase. Journal of Medicinal Chemistry, 48, 3005–3014.CrossRefPubMedGoogle Scholar
  45. Sneyd, J., Tsaneva-Atanasova, K., Yule, D., Thompson, J., & Shuttleworth, T. (2004). Control of calcium oscillations by membrane fluxes. PNAS, 101(5), 1392–1396.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sneyd, J., Tsaneva-Atanasova, K., Reznikov, V., Bai, Y., Sanderson, M., & Yule, D.I. (2006). A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. PNAS, 103(6), 1675–1680.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Takahashi, D., Vargas, J., & Wilcox, K. (2010). Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiology of Disease, 40, 573–585.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tanimura, A., Morita, A., Nezu, A., Shitara, A., Hashimoto, N., & Tojyo, Y. (2009). Use of fluorescence resonance energy transfer-based biosensors for the quantitative analysis of inositol 1,4,5-trisphosphate dynamics in calcium oscillations. Journal of Biological Chemistry, 284(13), 8910–8917.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Toivari, E., Manninen, T., Nahata, A., Jalonen, T., & Linne, M. (2011). Effects of transmitters and amyloid-beta peptide on calcium signals in rat cortical astrocytes: Fura-2am measurements and stochastic model simulations. PLOS One, 6(3), e17914.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tower, D., & Young, O.M. (1973). The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. Journal of Neurochemistry, 20, 269–278.CrossRefPubMedGoogle Scholar
  51. Ullah, G., Jung, P., & Cornell-Bell, A.H. (2006). Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium, 39, 197–208.CrossRefPubMedGoogle Scholar
  52. Verkhratsky, A., Rodríguez, J., & Parpura, V. (2012a). Calcium signalling in astroglia. Molecular and Cellular Endocrinology, 353, 45–56.CrossRefPubMedGoogle Scholar
  53. Verkhratsky, A., Sofroniew, M.V., Messing, A., deLanerolle, N.C., Rempe, D., Rodríguez, J.J., & Nedergaard, M. (2012b). Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro, 4(3), e00082.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wade, J., McDaid, L., Harkin, J., Crunelli, V., & Scott Kelso, J. (2011). Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLOS One, 6(12), e29445.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wallraf, A., Kohling, R., Heinemann, U., Theis, M., Willecke, K., & Steinhauser, C. (2006). The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. The Journal of Neuroscience, 26, 5438–5447.CrossRefGoogle Scholar
  56. Wang, F., Smith, N.A., Xu, Q., Fujita, T., Baba, A., Matsuda, T., Takano, T., Bekar, L., & Nedergaard, M. (2012). Astrocytes modulate neural network activity by ca2+ - dependent uptake. Science Signaling, 5(218), ra26.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wang, F., Smith, N.A., Xu, Q., Goldman, S., Peng, W., Huang, J.H., Takano, T., & Nedergaard, M. (2013). Photolysis of caged ca2+ but not receptor-mediated ca2+ signaling triggers astrocytic glutamate release. The Journal of Neuroscience, 33(44), 17404–17412.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhou, Y., & Danbolt, N.C. (2013). Gaba and glutamate transporters in brain. Frontiers in Endocrinology, 4(165). doi: 10.3389/fendo.2013.00165.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  3. 3.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations