The relationship between nernst equilibrium variability and the multifractality of interspike intervals in the hippocampus

Abstract

Spatiotemporal patterns of action potentials are considered to be closely related to information processing in the brain. Auto-generating neurons contributing to these processing tasks are known to cause multifractal behavior in the inter-spike intervals of the output action potentials. In this paper we define a novel relationship between this multifractality and the adaptive Nernst equilibrium in hippocampal neurons. Using this relationship we are able to differentiate between various drugs at varying dosages. Conventional methods limit their ability to account for cellular charge depletion by not including these adaptive Nernst equilibria. Our results provide a new theoretical approach for measuring the effects which drugs have on single-cell dynamics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aslanidi, O., & Mornev, O. (1999). Soliton-like regimes and excitation pulse reflection (echo) in homogeneous cardiac purkinje fibers: results of numerical simulations. Journal of Biological Physics, 25, 149–164.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Barabasi, A., & Vicsek, T. (1991). Multifractality of self-affine fractals. Physical Review A, 44, 2730–2733.

    CAS  Article  Google Scholar 

  3. Chamberland, S., & Topolnik, L. (2012). Inhibitory control of hippocampal inhibitory neurons. Frontiers in Neuroscience, 6(165).

  4. Commins, S., Gigg, J., Anderson, M., & O’Mara, S. (1998). The projection from hippocampal ca1 to the subiculum sustains long-term potentiation. Neuroreport, 9, 847–50.

    CAS  Article  PubMed  Google Scholar 

  5. Cressman, J., Ullah, G., Ziburkus, J., Schiff, S., & Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: i. single neuron dynamics. Journal of Computational Neuroscience, 26(2), 159–170.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cressman, J., Ullah, G., Ziburkus, J., Schiff, S., & Barreto, E. (2011). Erratum to: the influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. single neuron dynamics. Journal of Computational Neuroscience, 30, 781.

    Article  Google Scholar 

  7. Ermentrout, B. (1996). Type 1 membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.

    CAS  Article  PubMed  Google Scholar 

  8. Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Computation, 13, 1285– 1310.

    CAS  Article  PubMed  Google Scholar 

  9. Fadda, P., Robinson, L., Fratta, W., Pertwee, R.G., & Riedel, G. (2004). Differential effects of thc- or cbd-rich cannabis extracts on working memory in rats. Journal of Neuropharmacology, 47, 1170–1179.

    CAS  Article  PubMed  Google Scholar 

  10. Fetterhoff, D., Opris, I., Simpson, S.L., Deadwyler, S.A., Hampson, R.E., & Kraft, R.A. (2014). Multifractal analysis of information processing in hippocampal neural ensembles during working memory under thc administration. Journal of Neuroscience Methods, 1, 1–18.

    Google Scholar 

  11. Forrest, M.D. (2014). Intracellular calcium dynamics permit a purkinje neuron model to perform toggle and gain computations upon its inputs. Frontiers in Computational Neuroscience, 8, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hodgkin, A. (1948). The local electric changes associated with repetitive action in a non-medullated axon. Journal of Physiology, 107, 165–181.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Hoppensteadt, F., & Izhikevich, E. (1997). Weakly connected neural networks. New York: Springer.

    Google Scholar 

  15. Ihlen, E.A.F. (2012). Introduction to multifractal detrended fluctuation analysis in matlab. Frontiers in Physiology, 3, 1–18.

    Article  Google Scholar 

  16. Izhikevich, E.M. (2010). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: The MIT Press.

    Google Scholar 

  17. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Bunde, A., Havlin, S., & Stanley, E.H. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 316(141).

  18. Kobayashi, R., & Kitano, K. (2016). Impact of slow k + currents on spike generation can be described by an adaptive threshold model. Journal of Computational Neuroscience, 40, 347–362.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Koch, C., & Segev, I. (1989). Methods in neuronal modelling: from synapses to networks. Cambridge: The MIT Press.

    Google Scholar 

  20. Krinskii, V.I., & Kokoz, Y.M. (1973). Analysis of equations of excitable membranes - i. reduction of the hodgkin-huxley equations to a second order system. Biofizika, 18, 506–511.

    CAS  PubMed  Google Scholar 

  21. Meier, S.R., Lancaster, J.L., & Starobin, J.M. (2015). Bursting regimes in a reaction-diffusion system with action potential-dependent equilibrium. PLoS ONE, 10, e0122401.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Noori, H. (2011). The impact of the glial spatial buffering on the k + nernst potential. Cognitive Neurodynamics, 5, 285–291.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Pinsky, P.F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced traub model for ca3 neurons. Journal of Computational Neuroscience, 1, 39–60.

    CAS  Article  PubMed  Google Scholar 

  24. Pinsky, P.F., & Rinzel, J. (1995). Erratum to: intrinsic and network rhythmogenesis in a reduced traub model for ca3 neurons. Journal of Computational Neuroscience, 2, 275.

    Article  Google Scholar 

  25. Qian, B., & Rasheed, K. (2004). Hurst exponent and financial market predictability. In Financial engineering and applications (FEA 2004), Proceedings of the IASTED international conference (pp. 203–204).

  26. Schwalger, T., & Lindner, B. (2013). Patterns of interval correlations in neural oscillators with adaptation. Frontiers in Computational Neuroscience, 7(164).

  27. Scoville, W., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology Neurosurgery and Psychiatry, 20, 11–21.

    CAS  Article  Google Scholar 

  28. Traub, R.D., Wong, R.K.S., Miles, R., & Michelson, H. (1991). A model of a ca3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. Journal of Neurophysiology, 66, 635–650.

    CAS  PubMed  Google Scholar 

  29. van Vreeswijk, C., & Hansel, D. (2001). Patterns of synchrony in neural networks with spike adaptation. Neural Computational, 5, 959–992.

    Article  Google Scholar 

  30. Williams, R., & Herrup, K. (1988). The control of neuron number. Annual Review Neuroscience, 11, 423–453.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Meier.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Frances K. Skinner

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meier, S.R., Lancaster, J.L., Fetterhoff, D. et al. The relationship between nernst equilibrium variability and the multifractality of interspike intervals in the hippocampus. J Comput Neurosci 42, 167–175 (2017). https://doi.org/10.1007/s10827-016-0633-5

Download citation

Keywords

  • Hurst exponent
  • Multifractal detrended fluctuation analysis
  • Poisson process
  • Dale’s principle
  • Pyramidal neurons
  • Tetrahydrocannabinol
  • Cannabidiol