Journal of Computational Neuroscience

, Volume 42, Issue 1, pp 1–10 | Cite as

Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience

  • Robert A. McDougal
  • Thomas M. Morse
  • Ted Carnevale
  • Luis Marenco
  • Rixin Wang
  • Michele Migliore
  • Perry L. Miller
  • Gordon M. Shepherd
  • Michael L. Hines


Neuron modeling may be said to have originated with the Hodgkin and Huxley action potential model in 1952 and Rall’s models of integrative activity of dendrites in 1964. Over the ensuing decades, these approaches have led to a massive development of increasingly accurate and complex data-based models of neurons and neuronal circuits. ModelDB was founded in 1996 to support this new field and enhance the scientific credibility and utility of computational neuroscience models by providing a convenient venue for sharing them. It has grown to include over 1100 published models covering more than 130 research topics. It is actively curated and developed to help researchers discover and understand models of interest. ModelDB also provides mechanisms to assist running models both locally and remotely, and has a graphical tool that enables users to explore the anatomical and biophysical properties that are represented in a model. Each of its capabilities is undergoing continued refinement and improvement in response to user experience. Large research groups (Allen Brain Institute, EU Human Brain Project, etc.) are emerging that collect data across multiple scales and integrate that data into many complex models, presenting new challenges of scale. We end by predicting a future for neuroscience increasingly fueled by new technology and high performance computation, and increasingly in need of comprehensive user-friendly databases such as ModelDB to provide the means to integrate the data for deeper insights into brain function in health and disease.


Model sharing Model analysis Model discovery Reproducibility Neuroinformatics 



This project was supported by the National Institutes of Health (NIH) grants R01 DC009977 from the National Institute on Deafness and Other Communication Disorders (NIDCD) and T15 LM007056 from the National Library of Medicine (NLM). We are grateful for platforms provided to us for the curation of ModelDB models including the Louise cluster (part of Yale’s HPC facilities operated by the Yale Center for Research Computing and Yale’s W.M. Keck Biotechnology Laboratory, funded by NIH grants: RR19895 and RR029676-01) and the Neuroscience Gateway (NSG) Portal (Sivagnanam et al. 2013) supported by the National Science Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Computational Biology, 6(3), e1000705.Google Scholar
  2. Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature. Reviews in the Neurosciences, 7, 318–324.Google Scholar
  3. Ascoli, G. A. (2015). Sharing neuron data: carrots, sticks, and digital records. PLoS Biology, 13(10), e1002275.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. The Journal of Neuroscience, 27, 9247–9251.CrossRefPubMedGoogle Scholar
  5. Baker, B. J., Kosmidis, E. K., Vucinic, D., Falk, C. X., Cohen, L. B., Djurisic, M., & Zecevic, D. (2005). Imaging brain activity with voltage-and calcium-sensitive dyes. Cellular and molecular neurobiology, 25(2), 245–282.CrossRefPubMedGoogle Scholar
  6. Barthó, P., Slézia, A., Varga, V., Bokor, H., Pinault, D., Buzsáki, G., & Acsády, L. (2007). Cortical control of zona incerta. Journal of Neuroscience, 27(7), 1670–1681.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brandi, M., Brocke, E., Talukdar, H. A., Hanke, M., Bhalla, U. S., Kotaleski, J. H., & Djurfeldt, M. (2011). Connecting MOOSE and NeuroRD through MUSIC: towards a communication framework for multi-scale modeling. BMC Neuroscience, 12(Suppl 1), 77.CrossRefGoogle Scholar
  8. Carnevale, T., Majumdar, A., Sivagnanam, S., Yoshimoto, K., Astakhov, V., Bandrowski, A., & Martone, M. (2014). The neuroscience gateway portal: high performance computing made easy. BMC Neuroscience, 15.Google Scholar
  9. Chen, F., Tillberg, P. W., & Boyden, E. S. (2015). Expansion microscopy. Science, 347(6221), 543–548.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chung, K., & Deisseroth, K. (2013). CLARITY for mapping the nervous system. Nature methods, 10(6), 508–513.CrossRefPubMedGoogle Scholar
  11. Crook, SM, Davison, AP, Plesser, HE (2013) Learning from the past: approaches for reproducibility in computational neuroscience. 20 Years of Computational Neuroscience. Springer, New York 73–102.Google Scholar
  12. Deisseroth, K. (2011). Optogenetics. Nature methods, 8(1), 26–29.CrossRefPubMedGoogle Scholar
  13. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.CrossRefPubMedGoogle Scholar
  14. Dodge, F. A., & Cooley, J. W. (1973). Action potential of the motorneuron. IBM Journal of Research and Development, 17, 219–229.CrossRefGoogle Scholar
  15. Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, C., & Rasmussen, D. (2012). A large-scale model of the functioning brain. Science 338, 1202–1205.Google Scholar
  16. Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M., Morse, T. M., Davison, A. P., Ray, S., Bhalla, U. S., & Barnes, S. R. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Computational Biology, 6(6), e1000815.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gleeson, P., Piasini, E., Crook, S., Cannon, R., Steuber, V., Jaeger, D., Solinas, S., D’Angelo, E., & Silver, R. A. (2012). The open source brain initiative: enabling collaborative modelling in computational neuroscience. BMC Neuroscience, 13(Suppl 1), O7.CrossRefPubMedCentralGoogle Scholar
  18. Hamilton, D. J., Shepherd, G. M., Martone, M. E., & Ascoli, G. A. (2012). An ontological approach to describing neurons and their relationships. Front Neuroinform, 6, 15.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hines M (1993) NEURON—a program for simulation of nerve equations. In Neural systems: Analysis and modeling (pp. 127–136). New York: Springer.Google Scholar
  20. Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17, 7–11.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond), 117, 500–544.CrossRefGoogle Scholar
  22. Insel, T. R., Landis, S. C., & Collins, F. S. (2013). The NIH brain initiative. Science, 340.Google Scholar
  23. Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.CrossRefPubMedGoogle Scholar
  24. Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., Conchello, J. A., Knowles-Barley, S., Lee, D., Vázquez-Reina, A., Kaynig, V., Jones, T. R., Roberts, M., Morgan, J. L., Tapia, J. C., Seung, H. S., Ronca, W. G., Vogelstein, J. T., Burns, R., Sussman, D. L., Priebe, C. E., Pfister, H., & Lichtman, J. W. (2015). Saturated reconstruction of a volume of neocortex. Cell, 162(3), 648–661.CrossRefPubMedGoogle Scholar
  25. Keller, D., Babai, N., Kochubey, O., Han, Y., Markram, H., Schürmann, F., & Schneggenburger, R. (2015). An exclusion zone for Ca2+ channels around docked vesicles explains release control by multiple channels at a CNS synapse. PLoS Computational Biology 11, e1004253.Google Scholar
  26. Kim, J. K., & Forger, D. B. (2012). A mechanism for robust circadian timekeeping via stoichiometric balance. Molecular Systems Biology 8(630), 1–14. doi: 10.1038/msb.2012.62.
  27. Le Franc, Y., Davison, A. P., Gleeson, P., Imam, F. T., Kriener, B., Larson, S. D., Ray, S., Schwabe, L., Hill, S., & De Schutter, E. (2012). Computational neuroscience ontology: a new tool to provide semantic meaning to your models. BMC Neuroscience, 13(Suppl 1).Google Scholar
  28. Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., & Snoep, J. L. (2006). BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 34, D689–D691.CrossRefPubMedGoogle Scholar
  29. Lloyd, C. M., Lawson, J. R., Hunter, P. J., & Nielsen, P. F. (2008). The CellML model repository. Bioinformatics, 24, 2122–2123.CrossRefPubMedGoogle Scholar
  30. Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.CrossRefPubMedGoogle Scholar
  31. Man, O., Gilad, Y., & Lancet, D. (2004). Prediction of the odorant binding site of olfactory receptor proteins by human–mouse comparisons. Protein Science, 13(1), 240–254.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Markram, H. (2012). The human brain project. Scientific American, 306(6), 50–55.CrossRefPubMedGoogle Scholar
  33. Martin JB, Pechura CM eds (1991). Mapping the brain and its functions: integrating enabling technologies into Neuroscience Research (Vol. 91, No. 8). Washington, DC: National Academies Press.Google Scholar
  34. McDougal, R. A., Morse, T. M., Hines, M. L., & Shepherd, G. M. (2015). ModelView for ModelDB: online presentation of model structure. Neuroinformatics, 13, 459–470.CrossRefPubMedPubMedCentralGoogle Scholar
  35. McDougal, R. A., Bulanova, A. S., Lytton, W. W. (2016) Reproducibility in computational neuroscience models and simulations. IEEE Transactions on Biomedical Engineering. doi: 10.1109/TBME.2016.2539602.
  36. Migliore, M., Cavarretta, F., Hines, M. L., & Shepherd, G. M. (2014). Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb. Frontiers in Computational Neuroscience 8, 50.Google Scholar
  37. Mirsky, J. S., Nadkarni, P. M., Healy, M. D., Miller, P. L., & Shepherd, G. M. (1998). Database tools for integrating and searching membrane property data correlated with neuronal morphology. Journal of Neuroscience Method, 82, 105–121.CrossRefGoogle Scholar
  38. Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16, 72–80.CrossRefPubMedGoogle Scholar
  39. Morse, T., Carnevale, N. T., Mutalik, P., Migliore, M., & Shepherd, G. M. (2010). Abnormal excitability of oblique dendrites implicated in early Alzheimer’s: a computational study. Front in Neural Circuits, 4, 16.Google Scholar
  40. Nadkarni, P. M., Marenco, L., Chen, R., Skoufos, E., Shepherd, G., & Miller, P. (1999). Organization of heterogeneous scientific data using the EAV/CR representation. Journal of the American Medical Informatics Association, 6(6), 478–493.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Najafi, K., & Wise, K. D. (1986). An implantable multielectrode array with on-chip signal processing. IEEE Journal of Solid-State Circuits, 21(6), 1035–1044.CrossRefGoogle Scholar
  42. Neymotin, S. A., McDougal, R. A., Sherif, M. A., Fall, C. P., Hines, M. L., & Lytton, W. W. (2015). Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural Computation 27(4), 898–924.Google Scholar
  43. Neymotin, S. A., McDougal, R. A., Bulanova, A. S., Zeki, M., Lakatos, P., Terman, D., Hines, M. L., & Lytton, W. W. (2016). Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience 316, 344–366.Google Scholar
  44. Peterson, B. E., Healy, M. D., Nadkarni, P. M., Miller, P. L., & Shepherd, G. M. (1996). ModelDB: an environment for running and storing computational models and their results applied to neuroscience. Journal of the American Medical Informatics Association, 3, 389–398.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input-output relations. In R. F. Reiss (Ed.), Neural Theory and Modeling (pp. 73–97). Stanford, CA: Stanford University Press.Google Scholar
  46. Rall, W., & Shepherd, G. M. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. Journal of Neurophysiology, 31, 884–915.PubMedGoogle Scholar
  47. Shepherd, G. M., & Brayton, R. K. (1979). Computer simulation of a dendrodendritic synaptic circuit for self-and lateral-inhibition in the olfactory bulb. Brain Research, 175, 377–382.CrossRefPubMedGoogle Scholar
  48. Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A., Martone, M. E., & Carnevale, N. T. (2013) Introducing the Neuroscience Gateway, IWSG, volume 993 of CEUR Workshop Proceedings, London, UK.Google Scholar
  49. Stiles, J. R., & Bartol, T. M. (2001). Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. Computational Neuroscience: Realistic Modeling for Experimentalists, 87–127.Google Scholar
  50. Szigeti, B., Gleeson, P., Vella, M., Khayrulin, S., Palyanov, A., Hokanson, J., Currie, M., Cantarelli, M., Idili, G., & Larson, S. (2014). OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Frontiers in Computational Neuroscience, 8, 137.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Traub, R. D. (1977). Repetitive firing of Renshaw spinal interneurons. Biological Cybernetics, 27, 71–76.CrossRefPubMedGoogle Scholar
  52. Traub, R. D., & Llinas, R. (1977). The spatial distribution of ionic conductances in normal and axotomized motorneurons. Neuroscience, 2, 829–849.CrossRefGoogle Scholar
  53. Traub, R. D., & Llinas, R. (1979). Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. Journal of Neurophysiology, 42, 476–496.PubMedGoogle Scholar
  54. Tripathy, S. J., Savitskaya, J., Burton, S. D., Urban, N. N., & Gerkin, R. C. (2014). NeuroElectro: a window to the world’s neuron electrophysiology data. Front Neuroinform, 8, 40.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang, X. J., & Krystal, J. H. (2014). Computational psychiatry. Neuron, 84(3), 638–654.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yavuz, E., Turner, J., & Nowotny, T. (2016). GeNN: a code generation framework for accelerated brain simulations. Scientific Reports, 6, 18854.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Robert A. McDougal
    • 1
  • Thomas M. Morse
    • 1
  • Ted Carnevale
    • 1
  • Luis Marenco
    • 1
    • 2
    • 3
  • Rixin Wang
    • 3
    • 4
  • Michele Migliore
    • 1
    • 5
  • Perry L. Miller
    • 2
    • 3
    • 4
  • Gordon M. Shepherd
    • 1
  • Michael L. Hines
    • 1
  1. 1.Department of NeuroscienceYale UniversityNew HavenUSA
  2. 2.VA Connecticut Healthcare SystemWest HavenUSA
  3. 3.Center for Medical InformaticsYale UniversityNew HavenUSA
  4. 4.Department of AnesthesiologyYale UniversityNew HavenUSA
  5. 5.Institute of Biophysics, National Research CouncilPalermoItaly

Personalised recommendations