Skip to main content
Log in

Weakly coupled oscillators in a slowly varying world

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We extend the theory of weakly coupled oscillators to incorporate slowly varying inputs and parameters. We employ a combination of regular perturbation and an adiabatic approximation to derive equations for the phase-difference between a pair of oscillators. We apply this to the simple Hopf oscillator and then to a biophysical model. The latter represents the behavior of a neuron that is subject to slow modulation of a muscarinic current such as would occur during transient attention through cholinergic activation. Our method extends and simplifies the recent work of Kurebayashi (Physical Review Letters, 111, 214101, 2013) to include coupling. We apply the method to an all-to-all network and show that there is a waxing and waning of synchrony of modulated neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16(4), 673–715.

    Article  PubMed  Google Scholar 

  • Cressman, J.R. Jr, Ullah, G., Ziburkus, J., Schiff, S.J., & Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. single neuron dynamics. Journal of Computational Neuroscience, 26(2), 159–170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Danzl, P., Hansen, R., Bonnet, G., & Moehlis, J. (2008). Partial phase synchronization of neural populations due to random Poisson inputs. Journal of Computational Neuroscience, 25(1), 141– 157.

    Article  PubMed  Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students Vol. 14. SIAM.

  • Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Computation, 13(6), 1285–1310.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, B.G., Beverlin, B. II, & Netoff, T. (2012). Phase response curves to measure ion channel effects on neurons. In Phase response curves in neuroscience (pp. 207–236). Springer.

  • Ermentrout, B.G., Galán, R.F., & Urban, N.N. (2008). Reliability, synchrony and noise. Trends in Neurosciences, 31(8), 428– 434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ermentrout, G.B. (1981). n:m phase-locking of weakly coupled oscillators. Journal of Mathematical Biology, 12(3), 327–342.

    Article  Google Scholar 

  • Ermentrout, G.B., & Kopell, N. (1984). Frequency plateaus in a chain of weakly coupled oscillators, I. SIAM Journal on Mathematical Analysis, 15(2), 215–237.

    Article  Google Scholar 

  • Galán, R.F., Bard Ermentrout, G., & Urban, N.N. (2008). Optimal time scale for spike-time reliability: theory, simulations, and experiments. Journal of Neurophysiology, 99 (1), 277– 283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorelova, N., Seamans, J.K., & Yang, C.R. (2002). Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. Journal of Neurophysiology, 88(6), 3150–3166.

    Article  CAS  PubMed  Google Scholar 

  • Gutkin, B.S., Ermentrout, B.G., & Reyes, A.D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94(2), 1623–1635.

    Article  PubMed  Google Scholar 

  • Ho, Y.J., & Gutkin, B. (2007). Synchrony of neuronal oscillations controlled by GABAergic reversal potentials. Neural Computation, 19(3), 706–729.

    Article  Google Scholar 

  • Keener, J.P. (1988). Principles of applied mathematics: Addison-Wesley.

  • Kopell, N., & Howard, L.N. (1973). Plane wave solutions to reaction diffusion equations, 52, 291–328.

    Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. New York: Springer.

    Book  Google Scholar 

  • Kurebayashi, W., Shirasaka, S., & Nakao, H. (2013). Phase reduction method for strongly perturbed limit cycle oscillators. Physical Review Letters, 111, 214101.

    Article  PubMed  Google Scholar 

  • Kurebayashi, W., Shirasaka, S., & Nakao, H. (2015). A criterion for timescale decomposition of external inputs for generalized phase reduction of limit-cycle oscillators. Nonlinear Theory and Its Applications, IEICE, 6(2), 171–180.

    Article  Google Scholar 

  • Marée, G.J.M. (1996). Slow passage through a pitchfork bifurcation. SIAM Journal on Applied Mathematics, 56(3), 889–918.

    Article  Google Scholar 

  • McCormick, D.A. (1992). Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus. The Journal of Neuroscience, 12(1), 278–289.

    CAS  PubMed  Google Scholar 

  • Pfeuty, B., Mato, G., Golomb, D., & Hansel, D. (2003). Electrical synapses and synchrony: the role of intrinsic currents. The Journal of Neuroscience, 23(15), 6280–6294.

    CAS  PubMed  Google Scholar 

  • Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: a universal concept in nonlinear sciences, volume 12: Cambridge University Press.

  • Rubin, J.J., Rubin, J.E., & Ermentrout, G.B. (2013). Analysis of synchronization in a slowly changing environment: How slow coupling becomes fast weak coupling. Physical Review Letters, 110, 204101.

    Article  PubMed  Google Scholar 

  • Schwemmer, M.A., & Lewis, T.J. (2012). The theory of weakly coupled oscillators. In Phase response curves in neuroscience (pp. 3–31): Springer.

  • Sherman, A. (1994). Anti-phase, asymmetric and aperiodic oscillations in excitable cells–I. coupled bursters. Bulletin of Mathematical Biology, 56(5), 811–835.

    CAS  PubMed  Google Scholar 

  • Stiefel, K.M., Gutkin, B.S., & Sejnowski, T.J. (2008). Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons. PloS One, 3 (12), e3947– e3947.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiefel, K.M., Gutkin, B.S., & Sejnowski, T.J. (2009). The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. Journal of Computational Neuroscience, 26(2), 289–301.

    Article  PubMed  PubMed Central  Google Scholar 

  • Teramae, J.-n., & Tanaka, D. (2004). Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Physical Review Letters, 93(20), 204103.

    Article  PubMed  Google Scholar 

  • Wang, X.-J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience, 16 (20), 6402– 6413.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

BE and YMP were partially supported by NSF DMS 1219753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmin Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Charles Wilson

Appendix: Traub model with adaptation

Appendix: Traub model with adaptation

All other equations for the Traub model are defined as follows

$$\begin{array}{@{}rcl@{}} t_{w}(V)&=&\tau_{w}/(3.3\exp((V-V_{wt})/20)\notag\\&&+\exp(-(V-V_{wt})/20))\\ w_{\infty}(V)&=&1/(1+\exp(-(V-V_{wt})/10))\\ a_{m}(V)&=&0.32(54+V)/(1-\exp(-(V+54)/4))\\ b_{m}(V)&=&0.28(V+27)/(\exp((V+27)/5)-1)\\ a_{h}(V)&=&0.128\exp(-(V-V_{hn})/18)\\ b_{h}(V)&=&4/(1+\exp(-(V+27)/5))\\ a_{n}(V)&=&0.032(V+52)/(1-\exp(-(V+52)/5))\\ b_{n}(V)&=&0.5\exp(-(57+V)/40)\\ \alpha(V)&=&a_{0}/(1+\exp(-(V-V_{t})/V_{s})) \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Ermentrout, B. Weakly coupled oscillators in a slowly varying world. J Comput Neurosci 40, 269–281 (2016). https://doi.org/10.1007/s10827-016-0596-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-016-0596-6

Keywords

Navigation