Arieli, A, Shoham, D, Hildesheim, R, & Grinvald, A (1995). Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. Journal of Neurophysiology, 73(5), 2072–2093.
CAS
PubMed
Google Scholar
Bandyopadhyay, S, Shamma, SA, & Kanold, PO (2010). Dichotomy of functional organization in the mouse auditory cortex. Nature Neuroscience, 13(3), 361–368.
PubMed Central
CAS
PubMed
Article
Google Scholar
Barbour, B, Brunel, N, Hakim, V, & Nadal, JP (2007). What can we learn from synaptic weight distributions? Trends in Neuroscience, 30(12), 622–629. doi:10.1016/j.tins.2007.09.005. http://www.ncbi.nlm.nih.gov/pubmed/17983670.
CAS
Article
Google Scholar
Barbour, DL, & Callaway, EM (2008). Excitatory local connections of superficial neurons in rat auditory cortex. The Journal of Neuroscience, 28(44), 11,174–11,185.
CAS
Article
Google Scholar
Bartos, M, Vida, I, Frotscher, M, Meyer, A, Monyer, H, Geiger, JRP, & Jonas, P (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13,222–13,227.
CAS
Article
Google Scholar
Beierlein, M, Gibson, JR, & Connors, BW (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of Neurophysiology, 90(5), 2987–3000.
PubMed
Article
Google Scholar
Binzegger, T, Douglas, RJ, & Martin, KAC (2004). A quantitative map of the circuit of cat primary visual cortex. The Journal of Neuroscience, 24(39), 8441–8453.
CAS
PubMed
Article
Google Scholar
Bollimunta, A, Mo, J, Schroeder, CE, & Ding, M (2011). Neuronal mechanisms and attentional modulation of corticothalamic α oscillations. The Journal of Neuroscience, 24(39), 8441–8453.
Google Scholar
Buonomano, DV, & Maass, W (2009). State-dependent computations: spatiotemporal processing in cortical networks. Nature Reviews Neuroscience, 10(2), 113–125.
CAS
PubMed
Article
Google Scholar
Buzsáki, G, & Wang, XJ (2012). Mechanisms of gamma oscillations. Annual review of neuroscience, 35, 203–225.
PubMed Central
PubMed
Article
CAS
Google Scholar
Cardin, JA, Carlén, M, Meletis, K, Knoblich, U, Zhang, F, Deisseroth, K, Tsai, LH, & Moore, CI (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459 (7247), 663–667. doi:10.1038/nature08002. http://www.ncbi.nlm.nih.gov/pubmed/19396156.
PubMed Central
CAS
PubMed
Article
Google Scholar
Chang, EF, & Merzenich, MM (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498–502.
CAS
PubMed
Article
Google Scholar
Christophe, E, Roebuck, A, Staiger, JF, Lavery, DJ, Charpak, S, & Audinat, E (2002). Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. Journal of Neurophysiology, 88(3), 1318–1327. http://www.ncbi.nlm.nih.gov/pubmed/12205153.
CAS
PubMed
Google Scholar
Chrostowski, M, Yang, L, Wilson, HR, Bruce, IC, & Becker, S (2011). Can homeostatic plasticity in deafferented primary auditory cortex lead to travelling waves of excitation? Journal of Computational Neuroscience, 30(2), 279–299.
PubMed
Article
Google Scholar
Clement, EA, Richard, A, Thwaites, M, Ailon, J, Peters, S, & Dickson, CT (2008). Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia. PLoS One, 3(4), e2004.
PubMed Central
PubMed
Article
CAS
Google Scholar
Cottam, JC, Smith, SL, & Häusser, M (2013). Target-specific effects of somatostatin-expressing interneurons on neocortical visual processing. The Journal of Neuroscience, 33(50), 19567–19578.
PubMed Central
CAS
PubMed
Article
Google Scholar
Cruikshank, SJ, Rose, HJ, & Metherate, R (2002). Auditory thalamocortical synaptic transmission in vitro. Journal of Neurophysiology, 87(1), 361–384.
PubMed
Google Scholar
de Pinho, M, & Roque-da Silva, AC (1999). A realistic computational model of formation and variability of tonotopic maps in the auditory cortex. Neurocomputing, 26, 355–359.
Article
Google Scholar
de Pinho, M, Mazza, M, & Roque, AC (2006). A computational model of the primary auditory cortex exhibiting plasticity in the frequency representation. Neurocomputing, 70(1), 3–8.
Article
Google Scholar
de la Rocha, J, Marchetti, C, Schiff, M, & Reyes, AD (2008). Linking the response properties of cells in auditory cortex with network architecture: Cotuning versus lateral inhibition. The Journal of Neuroscience, 28(37), 9151–9163.
PubMed Central
CAS
PubMed
Article
Google Scholar
de Villers-Sidani, E, Chang, EF, Bao, S, & Merzenich, MM (2007). Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. The Journal of Neuroscience, 27(1), 180–189.
CAS
PubMed
Article
Google Scholar
DeFelipe, J, Alonso-Nanclares, L, & Arellano, JI (2002). Microstructure of the neocortex: comparative aspects. Journal of Neurocytology, 31(3–5), 299–316.
PubMed
Article
Google Scholar
Feldmeyer, D, Egger, V, Lubke, J, & Sakmann, B (1999). Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single barrel of developing rat somatosensory cortex. Journal of Physiology, 521 Pt 1, 169–190. http://www.ncbi.nlm.nih.gov/pubmed/10562343.
CAS
PubMed
Article
Google Scholar
Froemke, RC, Merzenich, MM, & Schreiner, CE (2007). A synaptic memory trace for cortical receptive field plasticity. Nature, 450(7168), 425–429.
CAS
PubMed
Article
Google Scholar
Froemke, RC, & Jones, BJ (2011). Development of auditory cortical synaptic receptive fields. Neuroscience & Biobehavioral Reviews, 35(10), 2105–2113.
Article
Google Scholar
Galarreta, M, & Hestrin, S (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature, 402(6757), 72–75.
CAS
PubMed
Article
Google Scholar
Gasparini, S, Migliore, M, & Magee, JC (2004). On the initiation and propagation of dendritic spikes in Ca1 pyramidal neurons. The Journal of Neuroscience, 24(49), 11,046–11,056.
CAS
Article
Google Scholar
Grossman, RL, Greenway, M, Heath, AP, Powell, R, Suarez, R, Wells, W, White, KP, Atkinson, M, Klampanos, I, Alvarez, H, Harvey, C, & Mambretti, J. (2012). The design of a community science cloud: The open science data cloud perspective. https://www.opensciencedatacloud.org/.
Happel, MF, Jeschke, M, & Ohl, FW (2010). Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. The Journal of Neuroscience, 30(33), 11,114–11,127.
CAS
Article
Google Scholar
Haeusler, S, Schuch, K, & Maass, W (2009). Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. Journal of Physiology Paris, 103(1-2), 73–87.
Article
Google Scholar
Harris, KD, & Shepherd, GM (2015). The neocortical circuit: themes and variations. Nature neuroscience, 18(2), 170–181.
CAS
PubMed
Article
Google Scholar
Hestrin, S, & Armstrong, WE (1996). Morphology and physiology of cortical neurons in layer I. The Journal of Neuroscience, 16(17), 5290–5300.
CAS
PubMed
Google Scholar
Hodgkin, AL, & Huxley, AF (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500.
PubMed Central
CAS
PubMed
Article
Google Scholar
Holmgren, C, Harkany, T, Svennenfors, B, & Zilberter, Y (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. Journal of Physiology, 551(Pt 1), 139–53. doi:10.1113/jphysiol.2003.044784. http://www.ncbi.nlm.nih.gov/pubmed/12813147.
PubMed Central
CAS
PubMed
Article
Google Scholar
Huang, CL, & Winer, JA (2000). Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology, 427(2), 302–331.
CAS
PubMed
Article
Google Scholar
Huxter, J, Burgess, N, & O’Keefe, J (2003). Independent rate and temporal coding in hippocampal pyramidal cells. Nature, 425(6960), 828–832.
PubMed Central
CAS
PubMed
Article
Google Scholar
Insanally, MN, Albanna, BF, & Bao, S (2010). Pulsed noise experience disrupts complex sound representations. Journal of Neurophysiology, 103(5), 2611.
PubMed Central
PubMed
Article
Google Scholar
Issa, JB, Haeffele, BD, Agarwal, A, Bergles, DE, Young, ED, & Yue, DT (2014). Multiscale optical Ca 2+ imaging of tonal organization in mouse auditory cortex. Neuron, 83(4), 944– 959.
PubMed Central
CAS
PubMed
Article
Google Scholar
Iurilli, G, Ghezzi, D, Olcese, U, Lassi, G, Nazzaro, C, Tonini, R, Tucci, V, Benfenati, F, & Medini, P (2012). Sound-driven synaptic inhibition in primary visual cortex. Neuron, 73(4), 814–828.
PubMed Central
CAS
PubMed
Article
Google Scholar
Izhikevich, EM (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.
CAS
PubMed
Article
Google Scholar
Izhikevich, EM (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070.
PubMed
Article
Google Scholar
Izhikevich, EM (2006). Polychronization: Computation with spikes. Neural Computation, 18(2), 245–282.
PubMed
Article
Google Scholar
Izhikevich, EM (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex, 17(10), 2443–2452.
PubMed
Article
Google Scholar
Izhikevich, EM, & Edelman, GM (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences, 105(9), 3593–3598.
CAS
Article
Google Scholar
Kawaguchi, Y (1995). Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. The Journal of Neuroscience, 15(4), 2638–2655.
CAS
PubMed
Google Scholar
Kawaguchi, Y, & Kubota, Y (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486.
CAS
PubMed
Article
Google Scholar
Kim, H, & Bao, S (2009). Selective increase in representations of sounds repeated at an ethological rate. The Journal of Neuroscience, 29(16), 5163–5169.
PubMed Central
CAS
PubMed
Article
Google Scholar
Kimura, A, Donishi, T, Sakoda, T, Hazama, M, & Tamai, Y (2003). Auditory thalamic nuclei projections to the temporal cortex in the rat. Neuroscience, 117(4), 1003–1016.
CAS
PubMed
Article
Google Scholar
Knight, BW (1972). Dynamics of encoding in a population of neurons. The Journal of General Physiology, 59 (6), 734–766.
PubMed Central
CAS
PubMed
Article
Google Scholar
Kotak, VC, Fujisawa, S, Lee, FA, Karthikeyan, O, Aoki, C, & Sanes, DH (2005). Hearing loss raises excitability in the auditory cortex. The Journal of Neuroscience, 25(15), 3908–3918.
PubMed Central
CAS
PubMed
Article
Google Scholar
Kral, A, Tillein, J, Heid, S, Klinke, R, & Hartmann, R (2006). Cochlear implants: cortical plasticity in congenital deprivation. Progress in Brain Research, 157, 283–313.
PubMed
Article
Google Scholar
Lapicque, L (1907). Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. Journal de Physiologie et de Pathologie Générale, 9(1), 620–635.
Google Scholar
Larson, E, Billimoria, CP, & Sen, K (2009). A biologically plausible computational model for auditory object recognition. Journal of Neurophysiology, 101(1), 323–331.
PubMed Central
PubMed
Article
Google Scholar
Larson, E, Perrone, BP, Sen, K, & Billimoria, CP (2010). A robust and biologically plausible spike pattern recognition network. The Journal of Neuroscience, 30(46), 15,566–15,572.
CAS
Article
Google Scholar
Lee, CC, & Winer, JA (2008). Connections of cat auditory cortex: I. Thalamocortical system. Journal of Comparative Neurology, 507(6), 1879–1900.
PubMed Central
PubMed
Article
Google Scholar
Letzkus, JJ, Wolff, SBE, Meyer, EMM, Tovote, P, Courtin, J, Herry, C, & Luethi, A (2011). A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature, 480(7377), 331–335.
CAS
PubMed
Article
Google Scholar
Levy, RB, & Reyes, AD (2012). Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. Journal of Neuroscience, 32(16), 5609–5619.
PubMed Central
CAS
PubMed
Article
Google Scholar
Li, LY, Ji, XY, Liang, FX, Li, YT, Xiao, ZJ, Tao, HZW, & Zhang, LI (2014a). A feedforward inhibitory circuit mediates lateral refinement of sensory representation in upper layer 2/3 of mouse primary auditory cortex. Journal of Neuroscience, 34(41), 13670–13683.
PubMed Central
PubMed
Article
CAS
Google Scholar
Li, LY, Xiong, XR, Ibrahim, LA, Yan, W, Tao, H, & Zhang, LI (2014b). Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex. Cerebral Cortex. Epub ahead of print.
Liebe, S, Hoerzer, GM, Logothetis, NK, & Rainer, G (2012). Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience, 15(3), 456–462.
CAS
PubMed
Article
Google Scholar
Markram, H, Lübke, J, Frotscher, M, & Sakmann, B (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297), 213–215.
CAS
PubMed
Article
Google Scholar
Markram, H, Toledo-Rodriguez, M, Wang, Y, Gupta, A, Silberberg, G, & Wu, C (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10), 793–807.
CAS
PubMed
Article
Google Scholar
Matsumoto, M, & Nishimura, T (1998). Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1), 3–30.
Article
Google Scholar
Moore, AK, & Wehr, M (2013). Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. The Journal of Neuroscience, 33(34), 13,713–13,723.
CAS
Article
Google Scholar
Muresan, RC, & Savin, C (2007). Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. Journal of Neurophysiology, 97(3), 1911–1930.
PubMed
Article
Google Scholar
Nahmani, M, & Turrigiano, GG (2014). Deprivation-induced strengthening of presynaptic and postsynaptic inhibitory transmission in layer 4 of visual cortex during the critical period. The Journal of Neuroscience, 34(7), 2571–2582.
PubMed Central
CAS
PubMed
Article
Google Scholar
Nelken, I (2014). Stimulus-specific adaptation and deviance detection in the auditory system: Experiments and models. Biological Cybernetics, 1–9. doi:10.1007/s00422-014-0585-7.
Nordlie, E, Gewaltig, MO, & Plesser, HE (2009). Towards reproducible descriptions of neuronal network models. PLoS Computational Biology, 5(8), 456.
Article
CAS
Google Scholar
Nunez, PL, & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. USA: Oxford University Press.
O’Keefe, J, & Recce, ML (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3(3), 317–330.
PubMed
Article
Google Scholar
Oswald, AMM, Schiff, ML, & Reyes, AD (2006). Synaptic mechanisms underlying auditory processing. Current Opinion in Neurobiology, 16(4), 371–376.
CAS
PubMed
Article
Google Scholar
Ouda, L, Druga, R, & Syka, J (2011). Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat. Brain Structure and Function, 217(1), 19–36.
PubMed
Article
CAS
Google Scholar
Phoka, E, Wildie, M, Schultz, SR, & Barahona, M (2012). Sensory experience modifies spontaneous state dynamics in a large-scale barrel cortical model. Journal of Computational Neuroscience, 33(2), 323–339.
PubMed
Article
Google Scholar
Popelová, M. (2013). Software tool for modelling coding and processing of information in auditory cortex of mice. Master Thesis, Charles University in Prague, Faculty of Mathematics and Physics. http://www.marketa.najevisti.info/dokumenty/master_thesis.pdf.
Raghavachari, S, Lisman, JE, Tully, M, Madsen, JR, Bromfield, EB, & Kahana, MJ (2006). Theta oscillations in human cortex during a working-memory task: Evidence for local generators. Journal of Neurophysiololgy, 95(3), 1630–1638. doi:10.1152/jn.00409.2005. http://www.ncbi.nlm.nih.gov/pubmed/16207788.
CAS
Article
Google Scholar
Reale, RA, Breugge, JF, & Chan, JC (1987). Maps of auditory cortex in cats reared after unilateral cochlear ablation in the neonatal period. Brain Research, 431(2), 281–290.
CAS
PubMed
Article
Google Scholar
Richardson, RJ, Blundon, JA, Bayazitov, IT, & Zakharenko, SS (2009). Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. Journal of Neuroscience, 29(20), 6406–17. doi:10.1523/JNEUROSCI.0258-09.2009
10.1523/JNEUROSCI.0258-09.2009. http://www.ncbi.nlm.nih.gov/pubmed/19458212.
PubMed Central
CAS
PubMed
Article
Google Scholar
Romanski, LM, & LeDoux, JE (1993). Organization of rodent auditory cortex: anterograde transport of PHA-L from MGv to temporal neocortex. Cerebral Cortex, 3(6), 499–514.
CAS
PubMed
Article
Google Scholar
Rothschild, G, Nelken, I, & Mizrahi, A (2010). Functional organization and population dynamics in the mouse primary auditory cortex. Nature Neuroscience, 13(3), 353–360.
CAS
PubMed
Article
Google Scholar
Sakata, S, & Harris, KD (2009). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64(3), 404–418.
PubMed Central
CAS
PubMed
Article
Google Scholar
Sakata, S, & Harris, KD (2012). Laminar-dependent effects of cortical state on auditory cortical spontaneous activity. Frontiers in Neural Circuits, 6(109). doi:10.3389/fncir.2012.00109.
Schreiner, CE, Read, HL, & Sutter, ML (2000). Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience, 23(1), 501–529.
CAS
PubMed
Article
Google Scholar
Schutter, ED. (2009). Computational modeling methods for neuroscientists. MIT Press.
Smith, P.H., & Populin, L.C. (2001). Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. Journal of Comparative Neurology, 436(4), 508–519.
Smith, PH, Uhlrich, DJ, Manning, KA, & Banks, MI (2012). Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. Journal of Comparative Neurology, 520 (1), 34–51. doi:10.1002/cne.22682. http://www.ncbi.nlm.nih.gov/pubmed/21618239.
Song, S, Miller, KD, & Abbott, LF (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926. doi:10.1038/78829. http://www.ncbi.nlm.nih.gov/pubmed/10966623.
CAS
PubMed
Article
Google Scholar
Song, S, Sjöström, PJ, Reigl, M, Nelson, S, & Chklovskii, DB (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3(3), e68.
PubMed Central
PubMed
Article
CAS
Google Scholar
Stanton, SG, & Harrison, RV (2000). Projections from the medial geniculate body to primary auditory cortex in neonatally deafened cats. Journal of Comparative Neurology, 426, 117–129.
CAS
PubMed
Article
Google Scholar
Steriade, M, McCormick, DA, & Sejnowski, TJ (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679–685.
CAS
PubMed
Article
Google Scholar
Stiebler, I, Neulist, R, Fichtel, I, & Ehret, G (1997). The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. Journal of Comparative Physiology A, 181(6), 559–571.
CAS
Article
Google Scholar
Sun, YJ, Wu, GK, Liu, Bh, Li, P, Zhou, M, Xiao, Z, Tao, HW, & Zhang, LI (2010). Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. Nature, 465(7300), 927–931.
PubMed Central
CAS
PubMed
Article
Google Scholar
Syka, J, Šuta, D, & Popelář, J (2005). Responses to species-specific vocalizations in the auditory cortex of awake and anesthetized guinea pigs. Hearing research, 206(1), 177–184.
PubMed
Article
Google Scholar
Šuta, D, Kvašňák, E, Popelář, J, & Syka, J (2003). Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. Journal of neurophysiology, 90(6), 3794–3808.
PubMed
Article
Google Scholar
Šuta, D, Popelář, J, Kvašňák, E, & Syka, J (2007). Representation of species-specific vocalizations in the medial geniculate body of the guinea pig. Experimental brain research, 183(3), 377–388.
PubMed
Article
Google Scholar
Šuta, D, Popelář, J, Burianová, J, & Syka, J (2013). Cortical representation of species-specific vocalizations in Guinea pig. PloS one, 8(6), e65432.
PubMed Central
PubMed
Article
CAS
Google Scholar
Timofeev, I, Grenier, F, Bazhenov, M, Sejnowski, TJ, & Steriade, M (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10(12), 1185–1199.
CAS
PubMed
Article
Google Scholar
Traub, RD, Spruston, N, Soltesz, I, Konnerth, A, Whittington, MA, & Jefferys, GR (1998). Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. Progress in Neurobiology, 55(6), 563–575.
CAS
PubMed
Article
Google Scholar
Wagatsuma, N, Potjans, TC, Diesmann, M, & Fukai, T (2011). Layer-Dependent Attentional Processing by Top-down Signals in a Visual Cortical Microcircuit Model. Frontiers in Computational Neuroscience, 5(31), 1–15.
Google Scholar
Watson, C. (2012). The mouse nervous system. Academic Press.
Wendykier, P (2013). Parallel Colt. https://sites.google.com/site/piotrwendykier/software/parallelcolt.
Wendykier, P, & Nagy, JG (2010). Parallel colt: A high-performance Java library for scientific computing and image processing. ACM Transactions on Mathematical Software (TOMS), 37(3), 31.
Article
Google Scholar
Wilson, NR, Runyan, CA, Wang, FL, & Sur, M (2012). Division and subtraction by distinct cortical inhibitory networks in vivo. Nature, 488(7411), 343–348.
PubMed Central
CAS
PubMed
Article
Google Scholar
Winer, JA (2006). Decoding the auditory corticofugal systems. Hearing Research, 212(1), 1–8.
PubMed
Article
Google Scholar
Winer, JA, & Lee, CC (2007). The distributed auditory cortex. Hearing Research, 229(1-2), 3.
PubMed Central
PubMed
Article
Google Scholar
Wu, GK, Arbuckle, R, Liu, Bh, Tao, HW, & Zhang, LI (2008). Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron, 58(1), 132–143.
PubMed Central
CAS
PubMed
Article
Google Scholar
Wu, GK, Tao, HW, & Zhang, LI (2011). From elementary synaptic circuits to information processing in primary auditory cortex. Neuroscience & Biobehavioral Reviews, 35(10), 2094– 2104.
Article
Google Scholar
Xu, S, Jiang, W, Poo, M, & Dan, Y (2012). Activity recall in a visual cortical ensemble. Nature Neuroscience, 15(3), 449–455.
PubMed Central
CAS
PubMed
Article
Google Scholar
Xu, H, Jeong, HY, Tremblay, R, & Rudy, B (2013). Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4. Neuron, 77(1), 155–167.
PubMed Central
CAS
PubMed
Article
Google Scholar
Yuste, R, & Denk, W (1995). Dendritic spines as basic functional units of neuronal integration. Nature, 375 (6533), 682–684.
CAS
PubMed
Article
Google Scholar
Zhang, LI, Bao, S, & Merzenich, MM (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4(11), 1123–1130.
CAS
PubMed
Article
Google Scholar
Zhang, LI, Bao, S, & Merzenich, MM (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proceedings of the National Academy of Sciences, 99(4), 2309–2314.
CAS
Article
Google Scholar
Zhou, X, Nagarajan, N, Mossop, BJ, & Merzenich, MM (2008). Influences of un-modulated acoustic inputs on functional maturation and critical-period plasticity of the primary auditory cortex. Neuroscience, 154(1), 390–396.
PubMed Central
CAS
PubMed
Article
Google Scholar
Zhou, Y, Mesik, L, Sun, YJ, Liang, F, Xiao, Z, Tao, HW, & Zhang, LI (2012). Generation of spike latency tuning by thalamocortical circuits in auditory cortex. The Journal of Neuroscience, 32(29), 9969–9980.
PubMed Central
CAS
PubMed
Article
Google Scholar
Zingg, B, Hintiryan, H, Gou, L, Song, MY, Bay, M, Bienkowski, M S, Foster, NN, Yamashita, S, Bowman, I, & Toga, AW (2014). Neural networks of the mouse neocortex. Cell, 156(5), 1096–1111.
PubMed Central
CAS
PubMed
Article
Google Scholar
Zucker, RS (1989). Short-term synaptic plasticity. Annual Review of Neuroscience, 12(1), 13–31.
CAS
PubMed
Article
Google Scholar