Journal of Computational Neuroscience

, Volume 39, Issue 1, pp 53–62 | Cite as

Infragranular layers lead information flow during slow oscillations according to information directionality indicators

  • J. M. Amigó
  • R. Monetti
  • N. Tort-Colet
  • M. V. Sanchez-Vives


The recurrent circuitry of the cerebral cortex generates an emergent pattern of activity that is organized into rhythmic periods of firing and silence referred to as slow oscillations (ca 1 Hz). Slow oscillations not only are dominant during slow wave sleep and deep anesthesia, but also can be generated by the isolated cortical network in vitro, being a sort of default activity of the cortical network. The cortex is densely and reciprocally connected with subcortical structures and, as a result, the slow oscillations in situ are the result of an interplay between cortex and thalamus. Due to this reciprocal connectivity and interplay, the mechanism responsible for the initiation of waves in the corticothalamocortical loop during slow oscillations is still a matter of debate. It was our objective to determine the directionality of the information flow between different layers of the cortex and the connected thalamus during spontaneous activity. With that purpose we obtained multilayer local field potentials from the rat visual cortex and from its connected thalamus, the lateral geniculate nucleus, during deep anaesthesia. We analyzed directionality of information flow between thalamus, cortical infragranular layers (5 and 6) and supragranular layers (2/3) by means of three information theoretical indicators: transfer entropy, symbolic transfer entropy and transcript mutual information. These three indicators coincided in finding that infragranular layers lead the information flow during slow oscillations both towards supragranular layers and towards the thalamus.


Transfer entropy Ordinal patterns Transcripts Symbolic transfer entropy Transcript mutual information Information directionality Local field potential Cerebral cortex Thalamus LGN Cortical rhythms Information processing Slow oscillations Up states 


  1. Amigó, J.M. (2010). Permutation complexity in dynamical systems - ordinal patterns, permutation entropy, and all that. Heidelberg: Springer Verlag.CrossRefGoogle Scholar
  2. Amigó, J.M. (2012). The equality of kolmogorov-sinai entropy and metric permutation entropy generalized. Physica D, 241, 789–793.CrossRefGoogle Scholar
  3. Amigó, J.M., Szczepanski, J., Wajnryb, E., & Sanchez-Vives, M.V. (2004). Estimating the entropy rate of spike trains via lempel-ziv complexity. Neural Computation, 16(4), 717–36.PubMedCrossRefGoogle Scholar
  4. Amigó, J.M., Zambrano, S., & Sanjuán, M.A.F. (2008). Combinatorial detection of determinism in noisy time series. Europhysics Letters, 83, 60005.CrossRefGoogle Scholar
  5. Amigó, J.M., Monetti, R., Aschenbrenner, T., & Bunk, W. (2012). Transcripts: An algebraic approach to coupled time series. Chaos, 22, 013105.PubMedCrossRefGoogle Scholar
  6. Amigó, J.M., Aschenbrenner, T., Bunk, W., & Monetti, R. (2014). Dimensional reduction of conditional algebraic multi-information via transcripts. Information Sciences, 278, 298–310.CrossRefGoogle Scholar
  7. Arnold, M.M., Szczepanski, J., Montejo, N., Amigó, J.M., Wajnryb, E., & Sanchez-Vives, M.V. (2013). Information content in cortical spike trains during brain state transitions. Journal of Sleep Research, 22, 13–21.PubMedCrossRefGoogle Scholar
  8. Beltramo, R., D’Urso, G., Dal Maschio, M., Farisello, P., Bovetti, S., Clovis, Y., Lassi, G., Tucci, V., De Pietri Tonelli, D., & Fellin, T. (2013). Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nature Neuroscience, 16(2), 227–34.PubMedCrossRefGoogle Scholar
  9. Besserve, M., Schölkopf, B., Logothetis, N., & Panzeri, S. (2010). Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis. Journal of Computational Neuroscience, 29(3), 547–566.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Borst, A., & Theunissen, F.E. (1999). Information theory and neural coding. Nature Neuroscience, 2, 947–957.PubMedCrossRefGoogle Scholar
  11. Chauvette, S., Volgushev, M., & Timofeev, I. (2010). Origin of active states in local neocortical networks during slow sleep oscillation. Cereb Cortex, 20(11), 2660–74.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Compte, A., Sanchez-Vives, M.V., McCormick, D.A., & Wang, X.J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89(5), 2707–25.PubMedCrossRefGoogle Scholar
  13. Crunelli, V., & Hughes, S.W. (2010). The slow (<1 hz) rhythm of non-rem sleep: a dialogue between three cardinal oscillators. Nature Neuroscience, 13(1), 9–17.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Crunelli, V., David, F., Lőrincz, M.L., & Hughes, S.W. (2015). The thalamocortical network as a single slow wave-generating unit. Current opinion in neurobiology, 31, 72–80.PubMedCrossRefGoogle Scholar
  15. David, F., Schmiedt, J.T., Taylor, H.L., Orban, G., Di Giovanni, G., Uebele, V.N., Renger, J.J., Lambert, R.C., Leresche, N., & Crunelli, V. (2013). Essential thalamic contribution to slow waves of natural sleep. Journal of Neuroscience, 33(50), 19599–610.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Gourévitch, B., & Eggermont, J.J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533–2543.PubMedCrossRefGoogle Scholar
  17. Granger, C.W.J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometricai, 37(3), 424–438.CrossRefGoogle Scholar
  18. Kantz, H., & Schreiber, T. (2000). Nonlinear Time Series Analysis. Cambridge: Cambridge University Press.Google Scholar
  19. Lemieux, M., Chen, J.Y., Lonjers, P., Bazhenov, M., & Timofeev, I. (2014). The impact of cortical deafferentation on the neocortical slow oscillation. The Journal of Neuroscience, 34(16), 5689–5703.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Ma, C., Pan, X., Wang, R., & Sakagami, M. (2013). Estimating causal interaction between prefrontal cortex and striatum by transfer entropy. Cognitive Neurodynamics, 7(3), 253–261.PubMedCentralPubMedCrossRefGoogle Scholar
  21. MacKay, D., & McCulloch, W.S. (1952). The limiting information capacity of a neuronal link. Bulletin of Mathematical Biophysics, 14, 127–135.CrossRefGoogle Scholar
  22. Mattia, M., & Sanchez-Vives, M.V. (2012). Exploring the spectrum of dynamical regimes and timescales in spontaneous cortical activity. Cognitive Neurodynamics, 6(3), 239–50.PubMedCentralPubMedCrossRefGoogle Scholar
  23. McCormick, Y., Shu, DAnd, Hasenstaub, A., Sanchez-Vives, M.V., Badoual, M., & Bal, T. (2003). Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex, 13(11), 1219–31.PubMedCrossRefGoogle Scholar
  24. Monetti, R., Bunk, W., Aschenbrenner, T., & Jamitzky, F. (2009). Characterizing synchronization in time series using information measures extracted from symbolic representations. Physical Review E, 79, 046207.CrossRefGoogle Scholar
  25. Monetti, R., Amigó, J.M., Aschenbrenner, T., & Bunk, W. (2013a). Permutation complexity of interacting dynamical systems. European Physical Journal Special Topics, 222, 421–436.CrossRefGoogle Scholar
  26. Monetti, R., Bunk, W., Aschenbrenner, T., Springer, S., & Amigó, J.M. (2013b). Information directionality in coupled time series using transcripts. Physical Review E, 88(022911).Google Scholar
  27. Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15, 1191–1253.CrossRefGoogle Scholar
  28. Paxinos, G., & Watson, C. (2004). The rat brain in stereotaxic coordinates. London: Elsevier Academic.Google Scholar
  29. Peters, A., Kara, D.A., & Harriman, K.M. (1985). The neuronal composition of area 17 of rat visual cortex: Numerical considerations. The Journal Of Comparative Neurology, 238, 263– 274.PubMedCrossRefGoogle Scholar
  30. Rigas, P., & Castro-Alamancos, M.A. (2007). Thalamocortical up states: differential effects of intrinsic and extrinsic cortical inputs on persistent activity. Journal Neuroscience, 27(16), 4261– 4272.CrossRefGoogle Scholar
  31. Roux, F., Wibral, M., Singer, W., Aru, J., & Uhlhaas, P.J. (2013). The phase of thalamic alpha activity modulates cortical gamma-band activity: evidence from resting-state meg recordings. Journal Neuroscience, 33(45), 17827–17835.CrossRefGoogle Scholar
  32. Sakata, S., & Harris, K.D. (2009). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64(3), 404–18.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Sanchez-Vives, M.V., & Mattia, M. (2014). Slow wave activity as the default mode of the cerebral cortex. Archives italiennes de biologie, 152(2/3), 147-155.Google Scholar
  34. Sanchez-Vives, M.V., & McCormick, D.A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3(10), 1027–34.PubMedCrossRefGoogle Scholar
  35. Sanchez-Vives, M.V., Descalzo, V.F., Reig, R., Figueroa, N.A., Compte, A., & Gallego, R. (2008). Rhythmic spontaneous activity in the piriform cortex. Cerebral Cortex, 18(5), 1179– 1192.PubMedCrossRefGoogle Scholar
  36. Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85, 461–464.PubMedCrossRefGoogle Scholar
  37. Staniek, M., & Lehnertz, K. (2008). Symbolic transfer entropy. Physical Review Letters, 100, 158101.PubMedCrossRefGoogle Scholar
  38. Steriade, M., Nuñez, A., & Amzica, F. (1993a). Intracellular analysis of relations between the slow (<1 hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal Neuroscience, 13(8), 3266–83.Google Scholar
  39. Steriade, M., Contreras, D., Curró Dossi, R., & Nuñez, A. (1993b). The slow (< 1 hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. Journal Neuroscience, 13(8), 3284–99.Google Scholar
  40. Stroh, A., Adelsberger, H., Groh, A., Rühlmann, C., Fischer, S., Schierloh, A., Deisseroth, K., & Konnerth, A (2013). Making waves: Initiation and propagation of corticothalamic C a 2+ waves in vivo. Neuron, 77(6), 1136–1150.PubMedCrossRefGoogle Scholar
  41. Timofeev, I., & Steriade, M. (1996). Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Journal of Neurophysiology, 76(6), 4152–4168. ISSN 0022-3077.PubMedGoogle Scholar
  42. Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T.J., & Steriade, M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10(12), 1185–1199.PubMedCrossRefGoogle Scholar
  43. Wester, J.C., & Contreras, D. (2012). Columnar interactions determine horizontal propagation of recurrent network activity in neocortex. The Journal of Neuroscience, 32(16), 5454–5471.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Wiener, N. (1956). Modern mathematics for the engineer. In Beckenbach, E.F. (Ed.) New York: McGraw-Hill.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. M. Amigó
    • 1
  • R. Monetti
    • 2
  • N. Tort-Colet
    • 3
  • M. V. Sanchez-Vives
    • 3
    • 4
  1. 1.Centro de Investigación Operativa (CIO)Universidad Miguel HernándezElcheSpain
  2. 2.IngSoft GmbHNurembergGermany
  3. 3.Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations