Skip to main content
Log in

Numerical modelling of plasticity induced by transcranial magnetic stimulation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We use neural field theory and spike-timing dependent plasticity to make a simple but biophysically reasonable model of long-term plasticity changes in the cortex due to transcranial magnetic stimulation (TMS). We show how common TMS protocols can be captured and studied within existing neural field theory. Specifically, we look at repetitive TMS protocols such as theta burst stimulation and paired-pulse protocols. Continuous repetitive protocols result mostly in depression, but intermittent repetitive protocols in potentiation. A paired pulse protocol results in depression at short ( < ∼ 10 ms) and long ( > ∼ 100 ms) interstimulus intervals, but potentiation for mid-range intervals. The model is sensitive to the choice of neural populations that are driven by the TMS pulses, and to the parameters that describe plasticity, which may aid interpretation of the high variability in existing experimental results. Driving excitatory populations results in greater plasticity changes than driving inhibitory populations. Modelling also shows the merit in optimizing a TMS protocol based on an individual’s electroencephalogram. Moreover, the model can be used to make predictions about protocols that may lead to improvements in repetitive TMS outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bi, G.Q., & Poo, M.M. (1998). Synaptic modifications in clutured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18, 10,464–10,472.

    CAS  Google Scholar 

  • Bienenstock, E., & Lehmann, D. (1998). Regulated criticality in the brain. Advances in complex systems, 1, 361–384.

    Article  Google Scholar 

  • Bienenstock, E.L., Cooper, L.N., Munro, P.W. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interation in visual cortex. Journal of Neuroscience, 2, 32–48.

    CAS  PubMed  Google Scholar 

  • Bojak, I., & Liley, D.T.J. (2010). Axonal velocity distributions in neural field equations. PLoS Computational Biology, 6, e1000, 653.

    Article  Google Scholar 

  • Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E.M., Hallett, M., Cohen, L.G. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48, 1398–1403.

    Article  CAS  PubMed  Google Scholar 

  • Civardi, C., Collini, A., Monaco, F., Cantello, R. (2009). Applications of transcranial magnetic stimulation in sleep medicine. Sleep Medicine Reviews, 13, 35–46.

    Article  PubMed  Google Scholar 

  • Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., Friston, K. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. Public Library of Science Computational Biology, 4(8), e1000, 092.

    Google Scholar 

  • Fitzgerald, P.B., Fountain, S., Daskalakis, Z.J. (2006). A comprehensive review of the effects of rTMS on motor cortex excitability and inhibition. Clinical Neurophysiology, 117, 2584–2596.

    Article  PubMed  Google Scholar 

  • Freeman, W.J. (1992). Predictions on neocortical dynamics derived from studies in paleocortex In Basar, E., & Bullock, T.H. (Eds.), Induced Rhythms of the Brain, chap. 9, (pp. 183–199). Boston: Birkhaeuser.

    Chapter  Google Scholar 

  • Fregni, F., Simon, D.K., Wu, A., Pascual-Leone, A. (2005). Biophysical mechanisms of multistability in resting-state cortical rhythms. Journal of Neurology, Neurosurgery and Psychiatry, 76, 1614–1623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fung, P.K., Haber, A.L., Robinson, P.A. (2013). Neural field theory of plasticity in the cerebral cortex. Journal of Theoretical Biology, 318, 44–57.

    Article  CAS  PubMed  Google Scholar 

  • Fung, P.K., & Robinson, P.A. (2013). Neural field theory of calcium dependent plasticity with applications to transcranial magnetic stimulation. Journal of Theoretical Biology, 324, 72–83.

    Article  CAS  PubMed  Google Scholar 

  • Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature, 386, 76–78.

    Article  Google Scholar 

  • Gerstner, W., & Kistler, W.M. (2002). Spiking neuron models: single neurons, populations, plasticity. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Hallett, M. (2007). Transcranial magnetic stimulation: a primer. Neuron, 55, 187–199.

    Article  CAS  PubMed  Google Scholar 

  • Hamada, M., Murase, N., Hasan, A., Balaratnam, M., Rothwell, J.C. (2013). The role of interneuron networks in driving human motor cortex plasticity. Cerebral Cortex, 23, 1593–1605.

    Article  PubMed  Google Scholar 

  • Hess, G., Aizenman, C.D., Donoghue, J.P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. Journal of Neurophysiology, 75, 1765–1778.

    CAS  PubMed  Google Scholar 

  • Huang, Y.Z., Edwards, M.J., Rounis, E., Bhatia, K.P., Rothwell, J. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45, 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Jirsa, V.K., & Haken, H. (1996). A field theory of electromagnetic brain activity. Physical Review Letters, 77, 960–963.

    Article  CAS  PubMed  Google Scholar 

  • Kempter, R., Gerstner, W., van Hemmen, J.L. (1999). Hebbian learning and spiking neurons. Physical Review E, 59, 4498–4514.

    Article  CAS  Google Scholar 

  • Koch, C. (1999). Biophysics of computation: information processing in single neurons. New York: Oxford University Press.

    Google Scholar 

  • Kujirai, T., Caramia, M.D., Rothwell, J.C., Day, B.L., Thompson, P.D., Ferbert, A., Wroe, S., Asselman, P., Marsden, C.D. (1993). Corticocortical inhibition in human motor cortex. Journal of Physiology, 471, 501–519.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazzaro, V.D., Oliviero, A., Meglio, M., Cioni, B., Tamburrini, G., Tonali, P., Rothwell, J.C. (2000). Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clinical Neurophysiology, 111, 794–799.

    Article  PubMed  Google Scholar 

  • Lazzaro, V.D., Pilato, F., Dileone, F., Profice, M., Olivero, A., Mazzone, P., Insola, A., Ranieri, F., Meglio, M., Tonali, P.A., Rothwell, J.C. (2008). The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. Journal of Physiology, 586, 3871–3879.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lazzaro, V.D., Pilato, F., Saturno, E., Olivero, A., Dileone, M., Mazzone, P., Insola, A., Tonali, P.A., Ranieri, F., Huang, Y.Z., Rothwell, J.C. (2005). Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. Journal of Physiology, 565, 945–950.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liley, D.T.J., Cadusch, P.J., Dafilis, M.P. (2002). A spatially continuous mean field theory of electro-cortical activity. Network, 13, 67–113.

    Article  PubMed  Google Scholar 

  • Lisman, J., & Spruston, N. (2010). Questions about STDP as a general model of synaptic plasticity. Frontiers in Synaptic Neuroscience, 2, 140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Massimini, M., Tononi, G., Huber, R. (2009). Slow waves, synaptic plasticity and information processing: insights from transcranial magnetic stimulation and high-density EEG experiments. European Journal of Neuroscience, 29, 1761–1770.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, H., Kitagawa, H., Kawaguchi, Y., Tsugi, H. (1997). Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. Journal of Physiology, 498, 817–823.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nunez, P.L. (1974). The brain wave function: a model for the EEG. Mathematical Biosciences, 21, 279–297.

    Article  Google Scholar 

  • Oberman, L., Edwards, D., Eldaief, M., Pascual-Leone, A. (2011). Safety of theta burst transcranial magnetic stimulation: a systematic review of the literature. Journal of Clinical Neurophysiology, 28, 67–74.

    Article  PubMed Central  PubMed  Google Scholar 

  • Palmer, L.M., Schulz, J.M., Murphy, S.C., Ledergerber, D., Murayama, M., Larkum, M.E. (2012). The cellular basis of GABAB-mediated interhemispheric inhibition. Science, 335, 989–993.

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Leone, A., Valls-Solé, J., Wassermann, E.M., Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117, 847–858.

    Article  PubMed  Google Scholar 

  • Pérez-Garci, E., Gassmann, M., Bettler, B., Larkum, M.E. (2006). The GABA\(_{\rm B 1 b}\) isoform mediates long-lasting inhibition of dendritic Ca\(^{\rm 2+}\) spikes in layer 5 somatosensory pyramidal neurons. Neuron, 50, 603–616.

    Article  PubMed  Google Scholar 

  • Ridding, M.C., & Rothwell, J.C. (2007). Is there a future for theraputic use of transcranial magnetic stimulation. Nature Neuroscience, 8, 559–567.

    Article  CAS  Google Scholar 

  • Robinson, P.A. (2011). Neural field theory of synaptic plasticity. Journal of Theoretical Biology, 285, 156–163.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, P.A., & Kim, J. W. (2012). Spike, rate, field and hybrid methods for treating neural dynamics derived from conductance-based equations. Journal of Neuroscience Methods, 205, 283–294.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, P.A., Rennie, C.J., Rowe, D.L., O‘Connor, S. (2004). Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Human Brain Mapping, 23, 53–72.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, P.A., Rennie, C.J., Rowe, D.L., O‘Connor, S., Gordon, E. (2005). Multiscale brain modelling. Philisophical Transactions of the Royal Society B, 360, 1043.

    Article  CAS  Google Scholar 

  • Robinson, P.A., Rennie, C.J., Wright, J.J. (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Physical Review E, 56, 826–840.

    Article  CAS  Google Scholar 

  • Rothkegel, H., Sommer, M., Paulus, W. (2010). Breaks during 5 Hz rTMS are essential for facilitatory after effects. Clinical Neurophysiology, 121, 426–430.

    Article  CAS  PubMed  Google Scholar 

  • Rothwell, J. (2003). Techniques of transcranial magnetic stimulation In Boniface, S., & Ziemann, U. (Eds.), Plasticity in the human nervous system: investigations with transcranial magnetic stimulation, (pp. 26–61). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Shouval, H.Z., Wang, S.S.H., Wittenberg, G. M. (2010). Spike timing dependent plasticity: a consequence of more fundamental learning rules. Frontiers in Computational Neuroscience, 4, 19.

    PubMed Central  PubMed  Google Scholar 

  • Silva, S., Basser, P.J., Miranda, P.C. (2008). Elucidating the mechanisms and loci of neuronal excitation by transcranial magnetic stimulation using a finite element model of a cortical sulcus. Clinical Neurophysiology, 119, 2405–2413.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steyn-Ross, D.A., Steyn-Ross, M.L., Sleigh, J.W., Wilson, M.T., Gillies, I.P., Wright, J.J. (2005). The sleep cycle modelled as a cortical phase transition. Journal of Biophysics, 31, 547–569.

    CAS  Google Scholar 

  • Steyn-Ross, M.L., Steyn-Ross, D.A., Wilson, M.T., Sleigh, J.W. (2009). Modeling brain activation patterns for the default and cognitive states. NeuroImage, 45, 289–311.

    Article  Google Scholar 

  • Talelli, P., Wallace, A., Dileone, M., Hoad, D., Cheeran, B., Oliver, R., VandenBos, M., Hammerbeck, U., Barratt, K., Gillini, C., Musumeci, G., Boudrias, H.H., Cloud, G.C., Ball, J., Marsden, J.F., Ward, N.S., Lazzaro, V.D., Greenwood, R.G., Rothwell, J.C. (2012). Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabilitation and Neural Repair, 26, 976–987.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostatis. Sleep Medicine Reviews, 10, 49–62.

    Article  PubMed  Google Scholar 

  • Touge, T., Gerschlager, W., Brown, P., Rothwell, J.C. (2001). Are the after-effects of low-frequency rtms on motor cortex excitability due to changes in the efficacy of cortical synapses?Clinical Neurophysiology, 112, 2138–2145.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, V., & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews: Neuroscience, 1, 73–79.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, H.R., & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson, M.T., Robinson, P.A., O’Neill, B., Steyn-Ross, D.A. (2012). Complementarity of spike- and rate-based dynamics of neural systems. PLoS Computational Biology, 8, e1002,560.

    Article  CAS  Google Scholar 

  • Wilson, M.T., Steyn-Ross, D.A., Sleigh, J.W., Steyn-Ross, M.L., Wilcocks, L.C., Gillies, I.P. (2006). The k-complex and slow oscillation in terms of a mean-field cortical model. Journal of Computational Neuroscience, 21, 243–257.

    Article  CAS  PubMed  Google Scholar 

  • Ziemann, U., Rothwell, J.C., Ridding, M.C. (1996). Interaction between intracortical inhibition and facilitation in human motor cortex. Journal of Physiology, 496, 873–881.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Felix Fung and Peter Robinson at The University of Sydney for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Wilson.

Additional information

Action Editor: Simon R Schultz

Conflict of interests

None

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, M.T., Goodwin, D.P., Brownjohn, P.W. et al. Numerical modelling of plasticity induced by transcranial magnetic stimulation. J Comput Neurosci 36, 499–514 (2014). https://doi.org/10.1007/s10827-013-0485-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0485-1

Keywords

Navigation