Journal of Computational Neuroscience

, Volume 36, Issue 2, pp 279–295 | Cite as

Distribution of correlated spiking events in a population-based approach for Integrate-and-Fire networks

  • Jiwei Zhang
  • Katherine Newhall
  • Douglas Zhou
  • Aaditya Rangan
Article

Abstract

Randomly connected populations of spiking neurons display a rich variety of dynamics. However, much of the current modeling and theoretical work has focused on two dynamical extremes: on one hand homogeneous dynamics characterized by weak correlations between neurons, and on the other hand total synchrony characterized by large populations firing in unison. In this paper we address the conceptual issue of how to mathematically characterize the partially synchronous “multiple firing events” (MFEs) which manifest in between these two dynamical extremes. We further develop a geometric method for obtaining the distribution of magnitudes of these MFEs by recasting the cascading firing event process as a first-passage time problem, and deriving an analytical approximation of the first passage time density valid for large neuron populations. Thus, we establish a direct link between the voltage distributions of excitatory and inhibitory neurons and the number of neurons firing in an MFE that can be easily integrated into population–based computational methods, thereby bridging the gap between homogeneous firing regimes and total synchrony.

Keywords

Spiking neurons Synchrony Homogeneity Multiple firing events First passage time Integrate and fire neuronal networks 

References

  1. Amari, S. (1974). A method of statistical neurodynamics. Kybernetik, 14, 201–215.PubMedGoogle Scholar
  2. Amit, D., & Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex, 7, 237–252.PubMedCrossRefGoogle Scholar
  3. Anderson, J., Carandini, M., Ferster, D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. Journal of Neurophysiology, 84, 909–926.PubMedGoogle Scholar
  4. Battaglia, D., & Hansel, D. (2011). Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex. PLoS Computational Biology, 7(10), e1002176.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Benayoun, M., Cowan, J.V., Drongelen, W., Wallace, E. (2010). Avalanches in a stochastic model of spiking neurons. PLoS Computational Biology, 6(7), e1002176.CrossRefGoogle Scholar
  6. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, J., Bower, J., Diesmann, M., Morrison, A., Goodman, P., Harris JR., F., et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.PubMedCrossRefGoogle Scholar
  8. Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11, 1621–1671.PubMedCrossRefGoogle Scholar
  9. Bruzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.CrossRefGoogle Scholar
  10. Cai, D., Rangan, A., McLaughlin, D. (2005). Architectural and synaptic mechanisms underlying coherent spontaneous activity in V1. Proceedings of the National Academy of Science, 102(16), 5868–5873.CrossRefGoogle Scholar
  11. Cai, D., Tao, L., Rangan, A. (2006). Kinetic theory for neuronal network dynamics. Communications Mathematical Sciences, 4, 97–127.CrossRefGoogle Scholar
  12. Cai, D., Tao, L., Shelley, M., McLaughlin, D. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Science, 101(20), 7757–7762.CrossRefGoogle Scholar
  13. Cardanobile, S., & Rotter, S. (2010). Multiplicatively interacting point processes and applications to neural modeling. Journal of Computational Neuroscience, 28, 267–284.PubMedCrossRefGoogle Scholar
  14. Churchland, M.M., & et al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378.PubMedCentralPubMedCrossRefGoogle Scholar
  15. DeVille, R., & Peskin, C. (2008). Synchrony and asynchrony in a fully stochastic neural network. Bulletin of Mathematical Biology, 70(6), 1608–33.PubMedCrossRefGoogle Scholar
  16. DeWeese, M., & Zador, A. (2006). Non-gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. Journal of Neuroscience, 26(47), 12,206–12,218.CrossRefGoogle Scholar
  17. Donsker, M. (1952). Justification and extension of Doobs heuristic approach to the Kolmogorov-Smirnov theorems. Annals of Mathematical Statistics, 23(2), 277–281.CrossRefGoogle Scholar
  18. Durbin, J. (1985). The first passage density of a continuous Gaussian process to a general boundary. Journal of Applied Probability, 22, 99–122.CrossRefGoogle Scholar
  19. Durbin, J., & Williams, D. (1992). The first passage density of the brownian process to a curved boundary. Journal of Applied Probability, 29, 291–304.CrossRefGoogle Scholar
  20. Eggert, J., & Hemmen, J. (2001). Modeling neuronal assemblies: theory and implementation. Neural Computation, 13, 1923–1974.PubMedCrossRefGoogle Scholar
  21. Fusi, S., & Mattia, M. (1999). Collective behavior of networks with linear integrate and fire neurons. Neural Computation, 11, 633–652.PubMedCrossRefGoogle Scholar
  22. Gerstner, W. (1995). Time structure of the activity in neural network models. Physical Review E, 51, 738–758.CrossRefGoogle Scholar
  23. Gerstner, W. (2000). Population dynamics of spiking neurons: fast transients, asynchronous states and locking. Neural Computation, 12, 43–89.PubMedCrossRefGoogle Scholar
  24. Hansel, D., & Sompolinsky, H. (1996). Chaos and synchrony in a model of a hypercolumn in visual cortex. Journal of Computational Neuroscience, 3, 7–34.PubMedCrossRefGoogle Scholar
  25. Knight, B. (1972). Dynamics of encoding in a population of neurons. Journal of General Physiology, 59, 734–766.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M., Rotter, S. (2008). Correlations and population dynamics in cortical networks. Neural Computation, 20, 2185–2226.PubMedCrossRefGoogle Scholar
  27. Krukowski, A., & Miller, K. (2000). Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning. Nature Neuroscience, 4, 424–430.CrossRefGoogle Scholar
  28. Lampl, I., Reichova, I., Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22, 361–374.PubMedCrossRefGoogle Scholar
  29. Lei, H., Riffell, J., Gage, S., Hildebrand, J. (2009). Contrast enhancement of stimulus intermittency in a primary olfactory network and its behavioral significance. Journal of Biology, 8, 21.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Mazzoni, A., Broccard, F., Garcia-Perez, E., Bonifazi, P., Ruaro, M., Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 2(5), e439.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Murthy, A., & Humphrey, A. (1999). Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. Journal of Neurophysiology, 81, 1212–1224.PubMedGoogle Scholar
  32. Newhall, K., Kovačič, G., Kramer, P., Cai, D. (2010). Cascade-induced synchrony in stochastically driven neuronal networks. Physical Review E, 82, 041903.CrossRefGoogle Scholar
  33. Nykamp, D., & Tranchina, D. (2000). A population density approach that facilitates large scale modeling of neural networks: analysis and application to orientation tuning. Journal of Computational Neuroscience, 8, 19–50.PubMedCrossRefGoogle Scholar
  34. Omurtage, A., Knight, B., Sirovich, L. (2000). On the simulation of a large population of neurons. Journal of Computational Neuroscience, 8, 51–63.CrossRefGoogle Scholar
  35. Petermann, T., Thiagarajan, T., Lebedev, M., Nicolelis, M., Chailvo, D., Plenz, D. (2009). Spontaneous cortical activity in awake monkeys composed of neuronal avalanches. Proceedings of the National Academy of Science, 106, 15,921–15,926.CrossRefGoogle Scholar
  36. Rangan, A., & Cai, D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 22(1), 81–100.PubMedCrossRefGoogle Scholar
  37. Rangan, A., & Young, L. (2012). A network model of V1 with collaborative activity. PNAS Submitted.Google Scholar
  38. Rangan, A., & Young, L. (2013a). Dynamics of spiking neurons: between homogeneity and synchrony. Journal of Computational Neuroscience, 34(3), 433-460. doi:10.1007/s10827-012-0429-1.PubMedCrossRefGoogle Scholar
  39. Rangan, A., & Young, L. (2013b). Emergent dynamics in a model of visual cortex. Journal of Computational Neuroscience. doi:10.1007/s10827-013-0445-9.PubMedCentralGoogle Scholar
  40. Renart, A., Brunel, N., Wang, X. (2004). Mean field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks. Computational Neuroscience: A comprehensive approach.Google Scholar
  41. Riffell, J., Lei, H., Hildebrand, J. (2009). Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proceedings of the National Academy of Science, 106, 19,219–19,226.CrossRefGoogle Scholar
  42. Riffell, J., Lei, H., Christensen, T., Hildebrand, J. (2009). Characterization and coding of behaviorally significant odor mixtures. Current Biology, 19, 335–340.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Samonds, J., Zhou, Z., Bernard, M., Bonds, A. (2005). Synchronous activity in cat visual cortex encodes collinear and cocircular contours. Journal of Neurophysiology, 95, 2602–2616.PubMedCrossRefGoogle Scholar
  44. Sillito, A. (1975). The contribution of inhibitory mechanisms to the receptive field properties of neurons in the striate cortex of the cat. Journal of Physiology, 250, 305–329.PubMedCentralPubMedGoogle Scholar
  45. Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations?Neuron, 24, 49–65.PubMedCrossRefGoogle Scholar
  46. Sompolinsky, H., & Shapley, R. (1997). New perspectives on the mechanisms for orientation selectivity. Current Opinion in Neurobiology, 7, 514–522.PubMedCrossRefGoogle Scholar
  47. Sun, Y., Zhou, D., Rangan, A., Cai, D. (2010). Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics. Journal of Computational Neuroscience, 28, 247–266.PubMedCrossRefGoogle Scholar
  48. Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network, 4, 259–284.CrossRefGoogle Scholar
  49. Wilson, H., & Cowan, D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Wilson, H., & Cowan, D. (1973). A Mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13, 55–80.PubMedCrossRefGoogle Scholar
  51. Worgotter, F., & Koch, C. (1991). A detailed model of the primary visual pathway in the cat comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. Journal of Neuroscience, 11, 1959–1979.PubMedGoogle Scholar
  52. Yu, Y., & Ferster, D. (2010). Membrane potential synchrony in primary visual cortex during sensory stimulation. Neuron, 68, 1187–1201.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Yu, S., Yang, H., Nakahara, H., Santos, G., Nikolic, D., Plenz, D. (2011). Higher-order interactions characterized in cortical activity. Journal of Neuroscience, 31, 17,514–17,526.CrossRefGoogle Scholar
  54. Zhang, J., Rangan, A., Cai, D., et al. (In preparation). A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony.Google Scholar
  55. Zhou, D., Sun, Y., Rangan, A., Cai, D. (2008). Network induced chaos in integrate-and-fire neuronal ensembles. Physical Review E, 80(3), 031918.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jiwei Zhang
    • 1
  • Katherine Newhall
    • 1
  • Douglas Zhou
    • 2
  • Aaditya Rangan
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  2. 2.Department of Mathematics, MOE-LSC and Institute of Natural SciencesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations