Abstract
Information theory has long been used to quantify interactions between two variables. With the rise of complex systems research, multivariate information measures have been increasingly used to investigate interactions between groups of three or more variables, often with an emphasis on so called synergistic and redundant interactions. While bivariate information measures are commonly agreed upon, the multivariate information measures in use today have been developed by many different groups, and differ in subtle, yet significant ways. Here, we will review these multivariate information measures with special emphasis paid to their relationship to synergy and redundancy, as well as examine the differences between these measures by applying them to several simple model systems. In addition to these systems, we will illustrate the usefulness of the information measures by analyzing neural spiking data from a dissociated culture through early stages of its development. Our aim is that this work will aid other researchers as they seek the best multivariate information measure for their specific research goals and system. Finally, we have made software available online which allows the user to calculate all of the information measures discussedwithin this paper.
This is a preview of subscription content, access via your institution.





Notes
Throughout the paper we will use capital letters to refer to variables and lower case letters to refer to individual values of those variables. We will also use discrete variables, though several of the information measures discussed can be directly extended to continuous variables. When working with a continuous variable, various techniques exists, such as kernel density estimation, which can be used to infer a discrete distribution from a continuous variable. Logarithms will be base 2 throughout in order to produce information values in units of bits.
We will use S to refer to a set of n X variables such that S = {X 1, X 2, . . . X n } throughout the paper.
It should be noted that DeWeese and Meister refer to the expression in Eq. (29) as the specific surprise.
References
Abdallah, S.A., & Plumbley, M.D. (2010). A measure of statistical complexity based on predictive information. arXiv:1012.1890v1.
Amari, S.I. (1995). Information geometry of the EM and em algorithms for neural networks. Neural Networks, 8(9), 1379.
Amari, S. (2001). IEEE Transactions on Information Theory, 47, 1701.
Anastassiou, D. (2007). Molecular Systems Biology, 3, 83.
Averbeck, B.B., Latham, P.E., Pouget, A. (2006). Nature Reviews Neuroscience, 7, 358.
Beggs, J.M., & Plenz, D. (2004). Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. Journal of Neuroscience, 24(22), 5216.
Bell, A.J. (2003). International workshop on independent component analysis and blind signal separation, (p. 921).
Berrou, C., Glavieux, A., Thitimajshima, P. (1993). In Proceedings of IEEE International Conference on Communications (Vol. 2, p. 1064).
Bettencourt, L.M.A., Stephens, G.J., Ham, M.I., Gross, G.W. (2007). Physical Review E, 75, 021915.
Bettencourt, L.M.A., Gintautas, V., Ham, M.I. (2008). Physical Review Letters, 100, 238701.
Bialek, W., Rieke, F., de Ruyter van Steveninck, R.R., Warland, D. (1991). Science, 252, 1854.
Borst, A., & Theunissen, F.E. (1999). Nature Neuorscience, 2, 947.
Brenner, N., Strong, S.P., Koberle, R., Bialek, W., de Ruyter van Steveninck, R.R. (2000). Neural Computation, 12, 1531.
Butte, A.J., & Kohane, I.S. (2000). In Pacific Symposium on Biocomputing (Vol. 5, p. 415).
Butts, D.A., & Rokhsar, D.S. (2001). Journal of Neuroscience, 21, 961.
Butts, D.A., Weng, C., Jin, J., Yeh, C.I., Lesica, N.A., Alonso, J.M., Stanley, G.B. (2007). Nature Letters, 449, 92.
Cerf, N.J., & Adami, C. (1997). Physical Review A, 55, 3371.
Chanda, P., Zhang, A., Brazeau, D., Sucheston, L., Freudenheim, J.L., Ambrosone, C., Ramanathan, M. (2007). American Journal of Human Genetics, 81, 939.
Chechik, G., Globerson, A., Tishby, N., Anderson, M.J., Young, E.D., Nelken, I. (2001). In T.G. Dietterich, S. Becker, Z. Ghahramani (Eds.), Neaural information processing systems 14 (Vol. 1, p. 173) MIT Press.
Cover, T.M., & Thomas, J.A. (2006). Elements of information theory, 2nd edn. Wiley-Interscience.
DeWeese, M.R., & Meister, M. (1999). Network: Computation in Neural Systems, 10, 325.
Fairhall, A., Shea-Brown, E., Barreiro, A. (2012). Current Opinion in Neurobiology, 22, 653.
Flecker, B., Alford, W., Beggs, J.M., Williams, P.L., Beer, R.D. (2011). Chaos, 21, 037104.
Fraser, A.M., & Swinney, H.L. (1986). Phys. Rev. A, 33, 1134.
Fujisawa, S., Amarasingham, A., Harrison, M.T., G. Buzsáki (2008). Nature Neuroscience, 11, 823.
Garofalo, M., Nieus, T., Massobrio, P., Martinoia, S. (2009). PLoS One, 4, e6482.
Gat, I., & Tishby, N. (1999). In M.S. Kearns, S.A. Solla, D.A. Cohn (Eds.), Neural information processing systems 11 (p. 111). MIT Press.
Globerson, A., Stark, E., Vaadia, E., Tishby, N. (2009). PNAS, 106, 3490.
Gollisch, T., & Meister, M. (2008). Science, 319, 1108.
Griffith, V., & Koch, C. (2012). Quantifying synergistic mutual information. arXiv:12054265v2.
Han, T.S. (1975). Information and Control, 29, 337.
Han, T.S. (1978). Information and Control, 36, 133.
Hatsopoulos, N., Geman, S., Amarasingham, A., Bienenstock, E. (2003). Neurocomputing, 52, 25.
Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., Bhattacharya, J. (2007). Physics Reports, 441, 1.
Honey, C.J., Kotter, R., Breakspear, M., Sporns, O. (2007). PNAS, 104, 10240.
Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., Yuste, R. (2004). Science, 304, 559.
Ito, S., Hansen, M.E., Heiland, R., Lumsdaine, A., Litke, A.M., Beggs, J.M. (2011). PLoS One, 6(21), e27431.
Jakulin, A., & Bratko, I. (2008). Quantifying and visualizing attribute interactions. arXiv:cs/0308002v3.
James, R.G., Ellison, C.J., Crutchfield, J.P. (2011). Chaos, 21, 037109.
Kamioka, H., Maeda, E., Jimbo, Y., Robinson, H.P.C., Kawana, A. (1996). Neuroscience Letters, 206, 109.
Kennel, M.B., Shlens, J., Abarbanel, H.D.I., Chichilnisky, E.J. (2005). Neural Computation, 17, 1531.
Latham, P.E., & Nirenberg, S. (2005). Journal of Neuroscience, 25, 5195.
Lizier, J.T., Heinzle, J., Horstmann, A., Haynes, J.D., Prokopenko, M. (2011). Journal of Computational Neuroscience, 30, 85.
Lizier, J.T., Flecker, B., Williams, P.L. (2013). Towards a synergy-based approach to measuring information modification. arXiv:1303.3440.
Louie, K., & Wilson, M.A. (2001). Neuron, 29, 145.
Lungarella, M., & Sporn, O. (2006). PLoS One, 2, e144.
Madhavan, R., Chao, Z.C., Potter, S.M. (2007). Physical Biology, 4, 181.
Marschinski, R., & Kantz, H. (2002). European Physical Journal B, 30, 275.
Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., Vaadia, E. (2000). Neural Computation, 12, 2621.
Matsuda, H. (2000). Physical Review E, 62, 3096.
McGill, W.J. (1954). Psychometrika, 19, 97.
Nemenman, I., Bialek, W., de Ruyter van Steveninck, R.R. (2004). Physical Review E, 69, 056111.
Nirenberg, S., Carcieri, S.M., Jacobs, A.L., Latham, P.E. (2001). Nature, 411, 698.
Ohiorhenuan, I.E., & Victor, J.D. (2011). Journal of Computational Neuroscience, 30, 125.
Ohiorhenuan, I.E., Mechlar, F., Purpura, K.P., Schmid, A.M., Hiu, Q., Victor, J.D. (2010). Nature Letters, 466, 617.
Olbrich, E., Bertschinger, N., Ay, N., Jost, J. (2008). European Physical Journal B, 63, 407.
Optican, L.M., & Richmond, B.J. (1987). Journal of Neurophysiology, 57, 162.
Paiva, A.R.C., Park, I., Principe, J.C. (2010). Neural Computation and Application, 19, 405.
Paninski, L. (2003). Neural Computation, 15, 1191.
Panzeri, S., & Treves, A. (1996). Network: Computation in Neural Systems, 7, 87.
Panzeri, S., Petersen, R.S., Schultz, S.R., Lebedev, M., Diamond, M.E. (2001). Neuron, 29, 769.
Panzeri, S., Senatore, R., Montemurro, M.A., Petersen, R.S. (2007). Journal of Neurophysiology, 98, 1064.
Pasquale, V., Massobrio, P., Bologna, L.L., Chiappalonea, M., Martinoia, S. (2008). Neuroscience, 153, 1354.
Pazienti, A., Maldonado, P.E., Diesmann, M., Grun, S. (2008). Brain Research, 1225, 39.
Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J., Simoncelli, E.P. (2008). Nature, 454, 995.
Quiroga, R.Q., & Panzeri, S. (2013). Nature Reviews Neuroscience, 10, 173.
Quiroga R.Q., & Panzeri S.(Eds.) (2013). Principles of Neural Coding. CRC Press LLC.
Rieke, F., Warland, D., de Ruyter van Steveninck, R.R., Bialek, W. (1997). Spikes: exploring the neural code. MIT Press.
Rivlin-Etzion, M., Ritov, Y., Heimer, G., Bergman, H., Bar-Gad, I. (2006). Journal of Neurophysiology, 95, 3245.
Rokem, A., Watzl, S., Gollisch, T., Stemmler, M., Herz, A.V.M., Samengo, I. (2006). Journal of Neurophysiology, 95, 2541.
Rolston, J.D., Wagenaar, D.A., Potter, S.M. (2007). Neuroscience, 148, 294.
Schreiber, T. (2000). Physical Review Letters, 85, 461.
Schneidman, E., Bialek, W., Berry II, M.J. (2003a). Journal of Neuroscience, 23, 11539.
Schneidman, E., Still, S., Berry II, M.J., Bialek, W. (2003b). Physical Review Letters, 91, 238701.
Schneidman, E., Berry II, M.J., Segev, R., Bialek, W. (2006). Nature, 440, 1007.
Shannon, C.E. (1948). The Bell System Technical Journal, 27, 379.
Shimazaki, H., Amari, S., Brown, E.N., Grun, S. (2012). PLoS Computational Biology, 8(3), e1002385.
Shlens, J., Field, G.D., Gauthier, J.L., Grivich, M.I., Petrusca, D., Sher, A., Litke, A.M., Chichilnisky, E.J. (2006). Journal of Neuroscience, 26, 8254.
Shlens, J., Kennel, M.B., Abarbanel, H.D.I., Chichilnisky, E.J. (2007). Neural Computation, 19, 1683.
Sporns, O., Tononi, G., Edelman, G.E. (2000). Cerebral Cortex, 10, 127.
Strong, S.P., Koberle, R., de Ruyter van Steveninck, R.R., Bialek, W. (1997). Physical Review Letters, 80, 197.
Tang, A., Jackson, D., Hobss, J., Chen, W., Smith, J.L., Patel, H., Prieto, A., Petrusca, D., Grivich, M.I., Sher, A., Hottowy, P., Dabrowski, W., Litke, A.M., Beggs, J.M. (2008). Journal of Neuroscience, 28, 505.
Tetzlaff, C., Okujeni, S., Egert, U., Worgotter, F., Butz, M. (2010). PLoS Computational Biology, 6, e1001013.
Timme, N., Alford, W., Flecker, B., Beggs, J.M. (2011). Multivariate information measures: an experimentalist’s perspective. arXiv:1111.6857.
Tononi, G., Sporns, O., Edelman, G.M. (1994). Proceedings of the National Academy of Sciences, 91, 5033.
Treves, A., & Panzeri, S. (1995). Neural Computation, 7, 399.
Varadan, V., Miller III, D.M., Anastassiou, D. (2006). Bioinformatics, 22, e497.
Vicente, R., Wibral, M., Lindner, M., Pipa, G. (2011). Journal of Computational Neuroscience, 30, 45.
Victor, J.D. (2002). Physical Review E, 66, 051902.
Victor, J.D. (2006). Biological Theory, 1, 302.
Wagenaar, D.A., Pine, J., Potter, S.M. (2006a). BMC Neuroscience, 7.
Wagenaar, D.A., Nadasdy, Z., Potter, S.M. (2006b). Physical Review E, 73, 051907.
Wang, L., Narayan, R., na, G.G., Shamir, M., Sen, K. (2007). Journal of Neuroscience, 27(3), 582.
Warland, D.K., Reinagel, P., Meister, M. (1997). Journal of Neurophysiology, 78, 2336.
Watanabe, S. (1960). IBM Journal of Research and Development, 4, 66.
Wennekers, T., & Ay, N. (2003). Theory in Bioscience, 122, 5.
Williams, P.L., & Beer, R.D. (2010). Decomposing multivariate information. arXiv:1004.2515v1.
Williams, P.L., & Beer, R.D. (2011). Generalized measures of information transfer. arXiv:1102.1507v1.
Yeh, F.C., Tang, A., Hobbs, J.P., Hottowy, P., Dabrowski, W., Sher, A., Litke, A., Beggs, J.M. (2010). Entropy, 12, 89.
Yu, S., Yang, H., Nakahara, H., Santos, G.S., Nikolic, D., Plenz, D. (2011). Higher-order interactions characterized in cortical activity. Journal of Neuroscience, 31, 17514.
Ziv, J., & Lempel, A. (1977). IEEE Transactions on Information Theory, 23, 337.
Acknowledgments
We would like to thank Paul Williams, Randy Beer, Alexander Murphy-Nakhnikian, Shinya Ito, Ben Nicholson, Emily Miller, Virgil Griffith, and Elizabeth Timme for providing useful comments. We would also like to thank the anonymous reviewers for their helpful comments on this paper. Their input during the revision process was invaluable.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Jonathan David Victor
Conflict of Interest
The authors declare that they have no conflict of interest.
Appendices
Appendix A: Additional total correlation derivation
Equation (14) can be rewritten as Eq. (15) by adding and subtracting several joint entropy terms and then using Eq. (2). For instance, when n = 3, we have:
A similar substitution can be peformed for n > 3.
Appendix B: Additional dual total correlation derivation
Equation (16) can be rewritten as Eq. (18) by substituting the expression for the total correlation in Eq. (14) and then applying Eq. (2).
Appendix C: Model network
Given values for p r , p 1 y , p 12, and p 2 y , the relevant conditional probabilities can be calculated in the following way:
Once these conditional probabilities are defined, the joint probabilities p(y, x 1, x 2) can be calculated using the general relationship between joint and conditional probabilities:
The joint probabilities for the examples discussed in the main text of the article are shown in Table 10.
Rights and permissions
About this article
Cite this article
Timme, N., Alford, W., Flecker, B. et al. Synergy, redundancy, and multivariate information measures: an experimentalist’s perspective. J Comput Neurosci 36, 119–140 (2014). https://doi.org/10.1007/s10827-013-0458-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-013-0458-4
Keywords
- Information theory
- Multivariate information measures
- Complex systems
- Neural coding
- Dissociated neuronal cultures
- Multielectrode array