Skip to main content

Reliability of spike and burst firing in thalamocortical relay cells

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The reliability and precision of the timing of spikes in a spike train is an important aspect of neuronal coding. We investigated reliability in thalamocortical relay (TCR) cells in the acute slice and also in a Morris-Lecar model with several extensions. A frozen Gaussian noise current, superimposed on a DC current, was injected into the TCR cell soma. The neuron responded with spike trains that showed trial-to-trial variability, due to amongst others slow changes in its internal state and the experimental setup. The DC current allowed to bring the neuron in different states, characterized by a well defined membrane voltage (between −80 and −50 mV) and by a specific firing regime that on depolarization gradually shifted from a predominantly bursting regime to a tonic spiking regime. The filtered frozen white noise generated a spike pattern output with a broad spike interval distribution. The coincidence factor and the Hunter and Milton measure were used as reliability measures of the output spike train. In the experimental TCR cell as well as the Morris-Lecar model cell the reliability depends on the shape (steepness) of the current input versus spike frequency output curve. The model also allowed to study the contribution of three relevant ionic membrane currents to reliability: a T-type calcium current, a cation selective h-current and a calcium dependent potassium current in order to allow bursting, investigate the consequences of a more complex current-frequency relation and produce realistic firing rates. The reliability of the output of the TCR cell increases with depolarization. In hyperpolarized states bursts are more reliable than single spikes. The analytically derived relations were capable to predict several of the experimentally recorded spike features.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    Note that Badel et al. (2008) use the membrane current \(I_{m} (t)=I_{in}(t)-C_{m} \frac {d V_{m}}{dt}\) in their I–V curve, whereas we use the input current \(I_{in}(t)\).

References

  1. Badel, L., Lefort, S., Brette, R., Petersen, C.C.H., Gerstner, W., Richardson, M.J.E. (2008). Journal of Neurophysiology, 99, 656.

    PubMed  Article  Google Scholar 

  2. Bernander, O., Douglas, R., Martin, K.A.C., Koch, C. (1991). Proceedings of the National Academy of Sciences of the United States of America, 88, 11569.

    Google Scholar 

  3. Bryant, H.L., & Segundo, J.P. (1976). Spike initiation by transmembrane current: a white-noise analysis. The Journal of Physiology, 260, 279–314.

    PubMed  CAS  Google Scholar 

  4. Cafaro, J., & Rieke, F. (2010). Nature, 468, 964.

  5. Chacron, M.J., Longtin, A., Maler, L. (2004). Journal of Computational Neuroscience, 17(2), 127.

    PubMed  Article  Google Scholar 

  6. de Ruyter van Steveninck, R.R., Lewen, G.D., Strong, S.P., Koberle, R., Bialek, W. (1997). Science, 275, 1805.

    PubMed  CAS  Article  Google Scholar 

  7. Destexhe, A., Babloyantz, A., Sejnowski, T.J. (1993). Biophysical Journal, 65, 1538.

    PubMed  CAS  Article  Google Scholar 

  8. Dyhrfjeld-Johnsen, J., Morgan, R.J., Földy, C., Soltesz, I. (2008). Frontiers in Cellular Neuroscience, 2(2).

  9. Fellous, J.M., Tiesinga, P.H.E., Thomas, P.J., Sejnowski, T.J. (2004). The Journal of Neuroscience, 24(12), 2989.

    PubMed  CAS  Article  Google Scholar 

  10. George, M.S., Abbott, L.F., Siegelbaum, S.A. (2009). Nature Neuroscience, 12(5), 577.

    PubMed  CAS  Article  Google Scholar 

  11. Goldberg, J.M., Smith, C.E., Fernandez, C. (1984). Journal of Neurophysiology, 51(6), 1236.

    PubMed  CAS  Google Scholar 

  12. Golding, N.L., Kath, W.L., Spruston, N. (2001). Journal of Neurophysiology, 86, 2998.

    PubMed  CAS  Google Scholar 

  13. Gutkin, B.S., & Ermentrout, B. (1998). Neural Computation, 10, 1047.

    PubMed  CAS  Article  Google Scholar 

  14. Gutkin, B.S., Ermentrout, B., Rudolph, M. (2003). Journal of Computational Neuroscience, 15, 91.

    PubMed  Article  Google Scholar 

  15. Hodgkin, A.L. (1948). The Journal of Physiology, 107, 165.

    PubMed  CAS  Google Scholar 

  16. Huguenard, J.R., & McCormick, D.A. (1992). Journal of Neurophysiology, 68(4), 1373.

    PubMed  CAS  Google Scholar 

  17. Hunter, J.D., & Milton, J.G. (2003). Journal of Neurophysiology, 90, 387.

    PubMed  Article  Google Scholar 

  18. Hunter, J.D., Milton, J., Thomas, P. (1998). Journal of Neurophysiology, 80, 1427.

    PubMed  CAS  Google Scholar 

  19. Izhikevich, E.M. (2005). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge: MIT Press.

    Google Scholar 

  20. Jahnsen, H., & Llinás, R. (1984). The Journal of Physiology, 349, 227.

    PubMed  CAS  Google Scholar 

  21. Johansson, R.S., & Birznieks, I. (2004). Nature Neuroscience, 7(2), 170.

    PubMed  CAS  Article  Google Scholar 

  22. Jolivet, R., Rauch, A., Lüscher, H.R., Gerstner, W. (2006). Journal of Computational Neuroscience, 21, 35.

    PubMed  Article  Google Scholar 

  23. Kepecs, A., & Lisman, J. (2003). Network: Computation in Neural Systems, 14(1), 103.

    Google Scholar 

  24. Kistler, W.M., Gerstner, W., van Hemmen, J.L. (1997). Neural Computation, 9, 1015.

    Article  Google Scholar 

  25. Kreuz, T., Haas, J.S., Morelli, A., Abarbanel, H.D.I., Politi, A. (2007). Journal of Neuroscience Methods, 165, 151.

    PubMed  Article  Google Scholar 

  26. Kreuz, T., Chicharro, D., Greschner, M., Andrzejak, R.G. (2011). Journal of Neuroscience Methods, 195, 92.

    PubMed  Article  Google Scholar 

  27. Kruskal, P., Stanis, J., McNaughton, B. (2007). Statistics in Medicine, 26, 3997.

    PubMed  Article  Google Scholar 

  28. Kuznetsova, M.S., Higgs, M.H., Spain, W.J. (2008). The Journal of Neuroscience, 28(46), 11906.

    PubMed  CAS  Article  Google Scholar 

  29. Lesica, N., & Stanley, G.B. (2004). The Journal of Neuroscience, 24(47), 10731.

    PubMed  CAS  Article  Google Scholar 

  30. Lyttle, D., & Fellous, J.M. (2011). Journal of Neuroscience Methods, 199(2), 296.

    PubMed  Article  Google Scholar 

  31. Maccaferri, G., Mangoni, M., Lazzari, A., DiFrancesco, D. (1993). Journal of Neurophysiology, 69(6), 2129.

    PubMed  CAS  Google Scholar 

  32. Magee, J.C. (1998). The Journal of Neuroscience, 18(19), 7613.

    PubMed  CAS  Google Scholar 

  33. Mainen, Z.F., & Sejnowski, T.J. (1995). Science, 268.

  34. Mainen, Z.F., & Sejnowski, T.J. (1996). Nature, 382, 363.

    PubMed  CAS  Article  Google Scholar 

  35. McCormick, D.A., & Huguenard, J.R. (1992). Journal of Neurophysiology, 68(4), 1384.

    PubMed  CAS  Google Scholar 

  36. Migliore, M., Messineo, L., Ferrante, M. (2004). Journal of Computational Neuroscience, 16(1), 5.

    PubMed  CAS  Article  Google Scholar 

  37. Morris, G., & Lecar, H. (1981). Biophysical Journal, 35(1), 193.

    PubMed  CAS  Article  Google Scholar 

  38. Naud, R., Gerhard, F., Gerstner, W. (2011). Neural Computation, 23(12).

  39. Oswald, A.M., Chacron, M.J., Doiron, B., Bastian, J., Maler, L. (2004). The Journal of Neuroscience, 24(18), 4351.

    PubMed  CAS  Article  Google Scholar 

  40. Paiva, A.R., Park, I., Principe, J.C. (2010). Neural Computing & Applications, 19, 405.

    Article  Google Scholar 

  41. Poirazi, P., Brannon, T., Mel, B.W. (2003). Neuron, 37, 977.

    PubMed  CAS  Article  Google Scholar 

  42. Poolos, N.P., Migliore, M., Johnston, D. (2002). Nature Neuroscience, 5(8), 767.

    PubMed  CAS  Google Scholar 

  43. Prescott, S.A., Ratté, S., De Koninck, Y., Sejnowski, T.J. (2006). The Journal of Neuroscience, 26(36), 9084.

    PubMed  CAS  Article  Google Scholar 

  44. Prescott, S.A., De Koninck, Y., Sejnowski, T.J. (2008a). PLoS Computational Biology, 4(10), e1000198.

    Article  Google Scholar 

  45. Prescott, S.A., Ratté, S., De Koninck, Y., Sejnowski, T.J. (2008b). Journal of Neurophysiology, 100, 3030.

    Article  Google Scholar 

  46. Reinagel, P., & Reid, R.C. (2000). The Journal of Neuroscience, 20(14), 5392.

    PubMed  CAS  Google Scholar 

  47. Reinagel, P., Godwin, D., Sherman, S.M., Koch, C. (1999). Journal of Neurophysiology, 81(5), 2558.

    PubMed  CAS  Google Scholar 

  48. Rinzel, J., & Ermentrout, B. (1998). In C. Koch, & I. Segev, (Eds.), Methods in Neural Modelling: from synapses to networks, (pp. 251–292). Cambridge: MIT Press.

    Google Scholar 

  49. Rubin, J.E., & Terman, D. (2004). Journal of Computational Neuroscience, 16, 211.

    PubMed  Article  Google Scholar 

  50. Rudolph, M., & Destexhe, A. (2003). Journal of Computational Neuroscience, 14, 239.

    PubMed  Article  Google Scholar 

  51. Schneider, A.D., Cullen, K.E., Chacron, M.J. (2011). PLoS Computational Biology, 7(7), e1002120.

    PubMed  CAS  Article  Google Scholar 

  52. Schreiber, S., Fellous, J.M., Whitmer, D., Tiesinga, P.H.E., Sejnowski, T.J. (2003). Neurocomputing, 52–54, 925.

    PubMed  Article  Google Scholar 

  53. Schreiber, S., Fellous, J.M., Tiesinga, P.H.E., Sejnowski, T.J. (2004). Journal of Neurophysiology, 91, 194.

    PubMed  Article  Google Scholar 

  54. Schreiber, S., Samengo, I., Herz, A.V.M. (2009). Journal of neurophysiology, 101(5), 2239.

    PubMed  Article  Google Scholar 

  55. Sherman, S.M. (2001). Trends in Neurosciences, 24(2), 122.

    PubMed  CAS  Article  Google Scholar 

  56. Stein, R.B. (1967). Biophysical journal, 7(1), 37.

    PubMed  CAS  Article  Google Scholar 

  57. Stein, R.B., Gossen, E.R., Jones, K.E. (2005). Nature Reviews Neuroscience, 6(5), 389.

    PubMed  CAS  Article  Google Scholar 

  58. Steriade, M., & Llinás, R. (1988). Physiological Reviews, 68, 649.

    PubMed  CAS  Google Scholar 

  59. Thomas, P.J., Tiesinga, P.H.E., Fellous, J.M., Sejnowski, T.J. (2003). Neurocomputing, 52–54, 955.

    PubMed  Article  Google Scholar 

  60. Tiesinga, P.H.E., Fellous, J.M., Sejnowski, T.J. (2008). Nature Neuroscience, 9, 97.

    CAS  Google Scholar 

  61. Tort, A.B., Rotstein, H.G., Dugladze, T., Gloveli, T., Kopell, N.J. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13490.

    Google Scholar 

  62. Toups, J.V., Fellous, J.-M., Thomas, P.J., Sejnowski, T.J., Tiesinga, P.H. (2012). Multiple spike time patterns occur at bifurcation points of membrane potential dynamics. PLoS Comput Biol, 8(10), e1002615.

    PubMed  CAS  Article  Google Scholar 

  63. van Rossum, M.C.W. (2001). Neural Computation, 13, 751.

    PubMed  CAS  Article  Google Scholar 

  64. van Welie, I., van Hooft, J.A., Wadman, W.J. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101(14), 5123.

    PubMed  CAS  Article  Google Scholar 

  65. Victor, J.D., & Purpura, K.P. (1996). Journal of Neurophysiology, 76(2), 1310.

    PubMed  CAS  Google Scholar 

  66. Victor, J.D., & Purpura, K.P. (1997). Network: Computation in Neural Systems, 8, 127.

    Article  Google Scholar 

  67. Wan, F.Y.M., & Tuckwell, H.C. (1982). Journal of Theoretical Neurobiology, 1, 197.

    Google Scholar 

  68. Zeldenrust, F. (2012). Neural coding with spikes and bursts: characterizing neurons and networks with noisy input. Ph.D. thesis, University of Amsterdam.

Download references

Acknowledgments

We are very grateful to the extensive and constructive comments of one of our anonymous reviewers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fleur Zeldenrust.

Additional information

Action Editor: Brent Doiron

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.45 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zeldenrust, F., Chameau, P.J.P. & Wadman, W.J. Reliability of spike and burst firing in thalamocortical relay cells. J Comput Neurosci 35, 317–334 (2013). https://doi.org/10.1007/s10827-013-0454-8

Download citation

Keywords

  • Reliability
  • Precision
  • Morris-Lecar model
  • Thalamocortical relay cell
  • Coincidence factor
  • Hunter and Milton measure
  • Frozen noise