Abstract
The reliability and precision of the timing of spikes in a spike train is an important aspect of neuronal coding. We investigated reliability in thalamocortical relay (TCR) cells in the acute slice and also in a Morris-Lecar model with several extensions. A frozen Gaussian noise current, superimposed on a DC current, was injected into the TCR cell soma. The neuron responded with spike trains that showed trial-to-trial variability, due to amongst others slow changes in its internal state and the experimental setup. The DC current allowed to bring the neuron in different states, characterized by a well defined membrane voltage (between −80 and −50 mV) and by a specific firing regime that on depolarization gradually shifted from a predominantly bursting regime to a tonic spiking regime. The filtered frozen white noise generated a spike pattern output with a broad spike interval distribution. The coincidence factor and the Hunter and Milton measure were used as reliability measures of the output spike train. In the experimental TCR cell as well as the Morris-Lecar model cell the reliability depends on the shape (steepness) of the current input versus spike frequency output curve. The model also allowed to study the contribution of three relevant ionic membrane currents to reliability: a T-type calcium current, a cation selective h-current and a calcium dependent potassium current in order to allow bursting, investigate the consequences of a more complex current-frequency relation and produce realistic firing rates. The reliability of the output of the TCR cell increases with depolarization. In hyperpolarized states bursts are more reliable than single spikes. The analytically derived relations were capable to predict several of the experimentally recorded spike features.
This is a preview of subscription content, access via your institution.












Notes
Note that Badel et al. (2008) use the membrane current \(I_{m} (t)=I_{in}(t)-C_{m} \frac {d V_{m}}{dt}\) in their I–V curve, whereas we use the input current \(I_{in}(t)\).
References
Badel, L., Lefort, S., Brette, R., Petersen, C.C.H., Gerstner, W., Richardson, M.J.E. (2008). Journal of Neurophysiology, 99, 656.
Bernander, O., Douglas, R., Martin, K.A.C., Koch, C. (1991). Proceedings of the National Academy of Sciences of the United States of America, 88, 11569.
Bryant, H.L., & Segundo, J.P. (1976). Spike initiation by transmembrane current: a white-noise analysis. The Journal of Physiology, 260, 279–314.
Cafaro, J., & Rieke, F. (2010). Nature, 468, 964.
Chacron, M.J., Longtin, A., Maler, L. (2004). Journal of Computational Neuroscience, 17(2), 127.
de Ruyter van Steveninck, R.R., Lewen, G.D., Strong, S.P., Koberle, R., Bialek, W. (1997). Science, 275, 1805.
Destexhe, A., Babloyantz, A., Sejnowski, T.J. (1993). Biophysical Journal, 65, 1538.
Dyhrfjeld-Johnsen, J., Morgan, R.J., Földy, C., Soltesz, I. (2008). Frontiers in Cellular Neuroscience, 2(2).
Fellous, J.M., Tiesinga, P.H.E., Thomas, P.J., Sejnowski, T.J. (2004). The Journal of Neuroscience, 24(12), 2989.
George, M.S., Abbott, L.F., Siegelbaum, S.A. (2009). Nature Neuroscience, 12(5), 577.
Goldberg, J.M., Smith, C.E., Fernandez, C. (1984). Journal of Neurophysiology, 51(6), 1236.
Golding, N.L., Kath, W.L., Spruston, N. (2001). Journal of Neurophysiology, 86, 2998.
Gutkin, B.S., & Ermentrout, B. (1998). Neural Computation, 10, 1047.
Gutkin, B.S., Ermentrout, B., Rudolph, M. (2003). Journal of Computational Neuroscience, 15, 91.
Hodgkin, A.L. (1948). The Journal of Physiology, 107, 165.
Huguenard, J.R., & McCormick, D.A. (1992). Journal of Neurophysiology, 68(4), 1373.
Hunter, J.D., & Milton, J.G. (2003). Journal of Neurophysiology, 90, 387.
Hunter, J.D., Milton, J., Thomas, P. (1998). Journal of Neurophysiology, 80, 1427.
Izhikevich, E.M. (2005). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge: MIT Press.
Jahnsen, H., & Llinás, R. (1984). The Journal of Physiology, 349, 227.
Johansson, R.S., & Birznieks, I. (2004). Nature Neuroscience, 7(2), 170.
Jolivet, R., Rauch, A., Lüscher, H.R., Gerstner, W. (2006). Journal of Computational Neuroscience, 21, 35.
Kepecs, A., & Lisman, J. (2003). Network: Computation in Neural Systems, 14(1), 103.
Kistler, W.M., Gerstner, W., van Hemmen, J.L. (1997). Neural Computation, 9, 1015.
Kreuz, T., Haas, J.S., Morelli, A., Abarbanel, H.D.I., Politi, A. (2007). Journal of Neuroscience Methods, 165, 151.
Kreuz, T., Chicharro, D., Greschner, M., Andrzejak, R.G. (2011). Journal of Neuroscience Methods, 195, 92.
Kruskal, P., Stanis, J., McNaughton, B. (2007). Statistics in Medicine, 26, 3997.
Kuznetsova, M.S., Higgs, M.H., Spain, W.J. (2008). The Journal of Neuroscience, 28(46), 11906.
Lesica, N., & Stanley, G.B. (2004). The Journal of Neuroscience, 24(47), 10731.
Lyttle, D., & Fellous, J.M. (2011). Journal of Neuroscience Methods, 199(2), 296.
Maccaferri, G., Mangoni, M., Lazzari, A., DiFrancesco, D. (1993). Journal of Neurophysiology, 69(6), 2129.
Magee, J.C. (1998). The Journal of Neuroscience, 18(19), 7613.
Mainen, Z.F., & Sejnowski, T.J. (1995). Science, 268.
Mainen, Z.F., & Sejnowski, T.J. (1996). Nature, 382, 363.
McCormick, D.A., & Huguenard, J.R. (1992). Journal of Neurophysiology, 68(4), 1384.
Migliore, M., Messineo, L., Ferrante, M. (2004). Journal of Computational Neuroscience, 16(1), 5.
Morris, G., & Lecar, H. (1981). Biophysical Journal, 35(1), 193.
Naud, R., Gerhard, F., Gerstner, W. (2011). Neural Computation, 23(12).
Oswald, A.M., Chacron, M.J., Doiron, B., Bastian, J., Maler, L. (2004). The Journal of Neuroscience, 24(18), 4351.
Paiva, A.R., Park, I., Principe, J.C. (2010). Neural Computing & Applications, 19, 405.
Poirazi, P., Brannon, T., Mel, B.W. (2003). Neuron, 37, 977.
Poolos, N.P., Migliore, M., Johnston, D. (2002). Nature Neuroscience, 5(8), 767.
Prescott, S.A., Ratté, S., De Koninck, Y., Sejnowski, T.J. (2006). The Journal of Neuroscience, 26(36), 9084.
Prescott, S.A., De Koninck, Y., Sejnowski, T.J. (2008a). PLoS Computational Biology, 4(10), e1000198.
Prescott, S.A., Ratté, S., De Koninck, Y., Sejnowski, T.J. (2008b). Journal of Neurophysiology, 100, 3030.
Reinagel, P., & Reid, R.C. (2000). The Journal of Neuroscience, 20(14), 5392.
Reinagel, P., Godwin, D., Sherman, S.M., Koch, C. (1999). Journal of Neurophysiology, 81(5), 2558.
Rinzel, J., & Ermentrout, B. (1998). In C. Koch, & I. Segev, (Eds.), Methods in Neural Modelling: from synapses to networks, (pp. 251–292). Cambridge: MIT Press.
Rubin, J.E., & Terman, D. (2004). Journal of Computational Neuroscience, 16, 211.
Rudolph, M., & Destexhe, A. (2003). Journal of Computational Neuroscience, 14, 239.
Schneider, A.D., Cullen, K.E., Chacron, M.J. (2011). PLoS Computational Biology, 7(7), e1002120.
Schreiber, S., Fellous, J.M., Whitmer, D., Tiesinga, P.H.E., Sejnowski, T.J. (2003). Neurocomputing, 52–54, 925.
Schreiber, S., Fellous, J.M., Tiesinga, P.H.E., Sejnowski, T.J. (2004). Journal of Neurophysiology, 91, 194.
Schreiber, S., Samengo, I., Herz, A.V.M. (2009). Journal of neurophysiology, 101(5), 2239.
Sherman, S.M. (2001). Trends in Neurosciences, 24(2), 122.
Stein, R.B. (1967). Biophysical journal, 7(1), 37.
Stein, R.B., Gossen, E.R., Jones, K.E. (2005). Nature Reviews Neuroscience, 6(5), 389.
Steriade, M., & Llinás, R. (1988). Physiological Reviews, 68, 649.
Thomas, P.J., Tiesinga, P.H.E., Fellous, J.M., Sejnowski, T.J. (2003). Neurocomputing, 52–54, 955.
Tiesinga, P.H.E., Fellous, J.M., Sejnowski, T.J. (2008). Nature Neuroscience, 9, 97.
Tort, A.B., Rotstein, H.G., Dugladze, T., Gloveli, T., Kopell, N.J. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13490.
Toups, J.V., Fellous, J.-M., Thomas, P.J., Sejnowski, T.J., Tiesinga, P.H. (2012). Multiple spike time patterns occur at bifurcation points of membrane potential dynamics. PLoS Comput Biol, 8(10), e1002615.
van Rossum, M.C.W. (2001). Neural Computation, 13, 751.
van Welie, I., van Hooft, J.A., Wadman, W.J. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101(14), 5123.
Victor, J.D., & Purpura, K.P. (1996). Journal of Neurophysiology, 76(2), 1310.
Victor, J.D., & Purpura, K.P. (1997). Network: Computation in Neural Systems, 8, 127.
Wan, F.Y.M., & Tuckwell, H.C. (1982). Journal of Theoretical Neurobiology, 1, 197.
Zeldenrust, F. (2012). Neural coding with spikes and bursts: characterizing neurons and networks with noisy input. Ph.D. thesis, University of Amsterdam.
Acknowledgments
We are very grateful to the extensive and constructive comments of one of our anonymous reviewers.
Author information
Authors and Affiliations
Corresponding author
Additional information
Action Editor: Brent Doiron
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zeldenrust, F., Chameau, P.J.P. & Wadman, W.J. Reliability of spike and burst firing in thalamocortical relay cells. J Comput Neurosci 35, 317–334 (2013). https://doi.org/10.1007/s10827-013-0454-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10827-013-0454-8
Keywords
- Reliability
- Precision
- Morris-Lecar model
- Thalamocortical relay cell
- Coincidence factor
- Hunter and Milton measure
- Frozen noise