Journal of Computational Neuroscience

, Volume 33, Issue 3, pp 435–447 | Cite as

Synaptic conditions for auto-associative memory storage and pattern completion in Jensen et al.’s model of hippocampal area CA3

  • Eng Yeow Cheu
  • Jiali Yu
  • Chin Hiong Tan
  • Huajin Tang


Jensen et al. (Learn Memory 3(2–3):243–256, 1996b) proposed an auto-associative memory model using an integrated short-term memory (STM) and long-term memory (LTM) spiking neural network. Their model requires that distinct pyramidal cells encoding different STM patterns are fired in different high-frequency gamma subcycles within each low-frequency theta oscillation. Auto-associative LTM is formed by modifying the recurrent synaptic efficacy between pyramidal cells. In order to store auto-associative LTM correctly, the recurrent synaptic efficacy must be bounded. The synaptic efficacy must be upper bounded to prevent re-firing of pyramidal cells in subsequent gamma subcycles. If cells encoding one memory item were to re-fire synchronously with other cells encoding another item in subsequent gamma subcycle, LTM stored via modifiable recurrent synapses would be corrupted. The synaptic efficacy must also be lower bounded so that memory pattern completion can be performed correctly. This paper uses the original model by Jensen et al. as the basis to illustrate the following points. Firstly, the importance of coordinated long-term memory (LTM) synaptic modification. Secondly, the use of a generic mathematical formulation (spiking response model) that can theoretically extend the results to other spiking network utilizing threshold-fire spiking neuron model. Thirdly, the interaction of long-term and short-term memory networks that possibly explains the asymmetric distribution of spike density in theta cycle through the merger of STM patterns with interaction of LTM network.


CA3 Auto-associative Pattern completion Synaptic condition Short-term memory Long-term memory 


  1. Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: Taming the beast. Nature Neuroscience, 3, 1178–1183.PubMedCrossRefGoogle Scholar
  2. Alonso, A., Gaztelu, J. M., Bun̋o, W., & García-Austt, E. (1987). Cross-correlation analysis of septohippocampal neurons during theta-rhythm. Brain Research, 413(1), 135–146.PubMedCrossRefGoogle Scholar
  3. Araneda, R., & Andrade, R. (1991). 5-hydroxytryptamine2 and 5-hydroxytryptamine1a receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience, 40(2), 399–412.PubMedCrossRefGoogle Scholar
  4. Bliss, T. V. P., Collingridge, G., & Morris, R. (2007). Synaptic Plasticity in the Hippocampus (chap 10, pp. 343–474). Oxford University PressGoogle Scholar
  5. Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K., & Buzsaki, G. (1995). Gamma (40–100 hz) oscillation in the hippocampus of the behaving rat. The Journal of Neuroscience, 15(1), 47–60.PubMedGoogle Scholar
  6. Bush, D., Philippides, A., Husbands, P., & O’Shea, M. (2010). Dual coding with stdp in a spiking recurrent neural network model of the hippocampus. PLoS Comput Biol 6(7), e1000,839.CrossRefGoogle Scholar
  7. Caillard, O., & Debanne, D. (2010). Cell-specific contribution to gamma oscillations. The Journal of Physiology, 588(5), 751–751.PubMedCrossRefGoogle Scholar
  8. Cantero, J. L., Atienza, M., Stickgold, R., Kahana, M. J., Madsen, J. R., & Kocsis, B. (2003). Sleep-dependent θ oscillations in the human hippocampus and neocortex. The Journal of Neuroscience, 23(34), 10,897–10,903.PubMedGoogle Scholar
  9. Cutsuridism, V., Cobb, S., Graham, B. P. (2010). Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus, 20(3), 423–446.Google Scholar
  10. Cutsuridis, V., & Wennekers, T. (2009). Hippocampus, microcircuits and associative memory. Neural Networks, 22(8), 1120–1128.PubMedCrossRefGoogle Scholar
  11. de Almeida, L., Idiart, M., & Lisman, J. E. (2007). Memory retrieval time and memory capacity of the CA3 network: Role of gamma frequency oscillations. Learning & Memory, 14(11), 795–806.CrossRefGoogle Scholar
  12. Forsythe, I. D., & Westbrook, G. L. (1988). Slow excitatory postsynaptic currents mediated by n-methyl-d-aspartate receptors on cultured mouse central neurones. The Journal of Physiology, 396(1), 515–533.PubMedGoogle Scholar
  13. Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons, populations, plasticity. New York: Cambridge University Press.CrossRefGoogle Scholar
  14. Hájos, N., & Paulsen, O. (2009). Network mechanisms of gamma oscillations in the CA3 region of the hippocampus. Neural Networks, 22(8), 1113–1119.PubMedCrossRefGoogle Scholar
  15. Hasselmo, M. E., Bodelon, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14(4), 793–817.PubMedCrossRefGoogle Scholar
  16. Hughes, J. R. (2008). Gamma, fast, and ultrafast waves of the brain: Their relationships with epilepsy and behavior. Epilepsy & Behavior, 13(1), 25–31.CrossRefGoogle Scholar
  17. Hunter, R., Cobb, S., & Graham, B. (2008). Improving associative memory in a network of spiking neurons. In Artificial neural networks - ICANN 2008 (vol. 5164, pp. 636–645). Springer Berlin/HeidelbergGoogle Scholar
  18. Jensen, O., & Lisman, J. E. (1996a). Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learning & Memory, 3(2–3), 279–287.CrossRefGoogle Scholar
  19. Jensen, O., & Lisman, J. E. (1996b). Novel lists of 7 + / − 2 known items can be reliably stored in an oscillatory short-term memory network: Interaction with long-term memory. Learning & Memory, 3, (2–3), 257–263.CrossRefGoogle Scholar
  20. Jensen, O., & Lisman, J. E. (1996c). Theta/gamma networks with slow nmda channels learn sequences and encode episodic memory: Role of NMDA channels in recall. Learning & Memory, 3(2–3), 264–278CrossRefGoogle Scholar
  21. Jensen, M. S., Azouz, R., & Yaari, Y. (1996a). Spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. The Journal of Physiology, 492(Pt 1), 199–210.PubMedGoogle Scholar
  22. Jensen, O., Idiart, M. A., & Lisman, J. E. (1996b). Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: Role of fast NMDA channels. Learning & Memory, 3(2–3), 243–256.CrossRefGoogle Scholar
  23. Koene, R. A., & Hasselmo M. E. (2007). First-in-first-out item replacement in a model of short-term memory based on persistent spiking. Cerebral Cortex, 17(8), 1766–1781.PubMedCrossRefGoogle Scholar
  24. Kunec, S., Hasselmo, M. E., & Kopell, N. (2005). Encoding and retrieval in the CA3 region of the hippocampus: A model of theta-phase separation. Journal of Neurophysiology, 94(1), 70–82.PubMedCrossRefGoogle Scholar
  25. Lisman, J., & Idiart, M. (1995). Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science, 267(5203), 1512–1515.PubMedCrossRefGoogle Scholar
  26. Maass, W., & Bishop, C. M. (Eds.), (1998). Pulsed neural networks. Cambridge, MA, USA: MIT Press.Google Scholar
  27. Mann, E. O., Radcliffe, C. A., & Paulsen, O. (2005). Hippocampal gamma-frequency oscillations: From interneurones to pyramidal cells, and back. The Journal of Physiology, 562(1), 55–63.PubMedCrossRefGoogle Scholar
  28. Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 262(841), 23–81.CrossRefGoogle Scholar
  29. Miles, R. (1990). Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. The Journal of Physiology, 428(1), 61–77.PubMedGoogle Scholar
  30. Mizuseki, K., Sirota, A., Pastalkova, E., Buzsáki, G. (2009). Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron, 64(2), 267–280.PubMedCrossRefGoogle Scholar
  31. Neves, G., Cooke, S. F., Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocampus: A neural network approach to causality. Nature Reviews Neuroscience, 9(1), 65–75.PubMedCrossRefGoogle Scholar
  32. Ozawa, S., Kamiya, H., & Tsuzuki, K. (1998). Glutamate receptors in the mammalian central nervous system. Progress in Neurobiology, 54(5), 581–618.PubMedCrossRefGoogle Scholar
  33. Park, J. Y., Remy, S., Varela, J., Cooper, D. C., Chung, S., Kang, H. W., et al. (2010). A post-burst afterdepolarization is mediated by group I metabotropic glutamate receptor-dependent upregulation of Cav2.3 R-type calcium channels in CA1 pyramidal neurons. PLoS Biology, 8(11), e1000,534.CrossRefGoogle Scholar
  34. Rajji, T., Chapman, D., Eichenbaum, H., & Greene, R. (2006). The role of CA3 hippocampal NMDA receptors in paired associate learning. The Journal of Neuroscience, 26(3), 908–915.PubMedCrossRefGoogle Scholar
  35. Rolls, E. T. (2008). Computational models of hippocampal functions. In J. H. Byrne (Ed.), Learning and memory: A comprehensive reference (pp. 641–665). Oxford: Academic Press.CrossRefGoogle Scholar
  36. Rolls E. T. (2010). A computational theory of episodic memory formation in the hippocampus. Behavioural Brain Research, 215(2), 180–196.PubMedCrossRefGoogle Scholar
  37. Rutishauser, U., Ross, I. B., Mamelak, A. N., & Schuman, E. M. (2010). Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464(7290), 903–907.PubMedCrossRefGoogle Scholar
  38. Samura, T., Hattori, M., & Ishizaki, S. (2007). Autoassociative and heteroassociative hippocampal CA3 model based on location dependencies derived from anatomical and physiological findings. International Congress Series 1301, 140–143.CrossRefGoogle Scholar
  39. Sik, A., Penttonen, M., Ylinen, A., & Buzsaki, G. (1995). Hippocampal CA1 interneurons: an in vivo intracellular labeling study. The Journal of Neuroscience, 15(10), 6651–6665.PubMedGoogle Scholar
  40. Skaggs, W. E., McNaughton, B. L., Wilson M. A., & Barnes C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6(2), 149–172.PubMedCrossRefGoogle Scholar
  41. Sommer, F. T., & Wennekers, T. (2001). Associative memory in networks of spiking neurons. Neural Networks, 14(6–7), 825–834PubMedCrossRefGoogle Scholar
  42. Stern, P., Edwards, F. A., & Sakmann, B. (1992). Fast and slow components of unitary EPSCs on stellate cells elicited by focal stimulation in slices of rat visual cortex. The Journal of Physiology, 449(1), 247–278.PubMedGoogle Scholar
  43. Storm, J. F. (1989). An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. The Journal of Physiology, 409(1), 171–190.PubMedGoogle Scholar
  44. Tan, C. H., Cheu, E. Y., Hu, J., Yu, Q., & Tang, H. (2011). Associative memory model of hippocampus CA3 using spike response neurons. In International conference on neural information processing (pp. 493–500).Google Scholar
  45. Vanderwolf, C. (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and Clinical Neurophysiology, 26(4), 407–418.PubMedCrossRefGoogle Scholar
  46. Wagatsuma, H., & Yamaguchi, Y. (2004). Cognitive map formation through sequence encoding by theta phase precession. Neural Computation, 16(12), 2665–2697.PubMedCrossRefGoogle Scholar
  47. Wagatsuma, H., & Yamaguchi, Y. (2007). Neural dynamics of the cognitive map in the hippocampus. Cognitive Neurodynamics, 1(2), 119–141.PubMedCrossRefGoogle Scholar
  48. Yamaguchi, Y., Aota, Y., McNaughton, B. L., & Lipa, P. (2002). Bimodality of theta phase precession in hippocampal place cells in freely running rats. Journal of Neurophysiology, 87(6), 2629–2642.PubMedGoogle Scholar
  49. Yamaguchi, Y., Sato, N., Wagatsuma, H., Wu, Z., Molter, C., & Aota, Y. (2007). A unified view of theta-phase coding in the entorhinal-hippocampal system. Current Opinion in Neurobiology, 17(2), 197–204.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Eng Yeow Cheu
    • 1
  • Jiali Yu
    • 1
  • Chin Hiong Tan
    • 1
  • Huajin Tang
    • 1
  1. 1.Institute for Infocomm ResearchAgency for Science Technology and Research (A*STAR)SingaporeSingapore

Personalised recommendations