Skip to main content

Reduced order modeling of passive and quasi-active dendrites for nervous system simulation

Abstract

Accurate neuron models at the level of the single cell are composed of dendrites described by a large number of compartments. The network-level simulation of complex nervous systems requires highly compact yet accurate single neuron models. We present a systematic, numerically efficient and stable model order reduction approach to reduce the complexity of large dendrites by orders of magnitude. The resulting reduced dendrite models match the impedances of the full model within the frequency range of biological signals and reproduce the original action potential output waveforms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. Antoulas, A. C. (2005). Approximation of large-scale dynamical systems. Philadelphia: Society of Industrial and Applied Mathematics (SIAM).

    Book  Google Scholar 

  2. Bai, Z., & Su, Y. (2005). Dimension reduction of large-scale second-order dynamical systems va a second-order Arnoldi method. SIAM Journal on Scientific Computing, 26(5), 1692–1709.

    Article  Google Scholar 

  3. Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System. New York: Springer.

    Google Scholar 

  4. Bush, P. C., & Sejnowski, T. J. (1993). Reduced compartmental models of neocortical pyramidal cells. Journal of Neuroscience Methods, 46, 159–166.

    PubMed  Article  CAS  Google Scholar 

  5. Butts, D. A., Weng, C., Jin, J., Yeh, C., Lesica, N. A., Alonso, J., et al. (2007). Temporal precision in the neural code and the timescales of natural vision. Nature, 449, 92–95.

    PubMed  Article  CAS  Google Scholar 

  6. Dayan, P., & Abbott, L. (2001), Theoretical neuroscience: Computational and mathematical modeling of neural system. Cambridge: MIT Press.

    Google Scholar 

  7. Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, Ö., & Lansner, A. (2007). Brain-scale simulation of the neocortex on the IBM blue Gene/L supercomputer. IBM Journal of Research and Development, 52(1/2), 31–40.

    Google Scholar 

  8. Dyhrfjeld-Johnsen, J., Maier, J., Schubert, D., Staiger, J., Luhmann, H. J., Stephan, K. E., et al. (2005). CoCoDat: A database system for organizing and selecting quantitative data on single neurons and neuronal microcircuitry. Journal of Neuroscience Methods, 141, 291–308.

    PubMed  Article  CAS  Google Scholar 

  9. Feldmann, P., & Freund, R. W. (1995), Efficient linear circuit analysis by Padė approximation via the Lanczos process. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14, 639–649.

    Article  Google Scholar 

  10. Gerstner, W., Kreiter, A. K., Markram, H., & Herz, A. V. M. (1997). Neural codes: Firing rates and beyond. Proceedings of the National Academy of Sciences of the United States of America, 94, 12740–12741.

    PubMed  Article  CAS  Google Scholar 

  11. Glover, K. (1984). All optimal Hankel norm approximations of linear multivariable systems and their L  ∞  error bounds. International Journal of Control, 39(6), 1145–1193.

    Article  Google Scholar 

  12. Grimme, E. J., Sorensen, D. C., & Van Dooren, P. (2005). Model reduction of state space systems via an implicitly restarted Lanczos method. Numerical Algorithms, 12(1), 1–31.

    Article  Google Scholar 

  13. Gugercin, S., Antoulas, S., & Beattie, C. (2008). H 2 model reduction for large-scale linear dynamical systems. SIAM Journal on Matrix Analysis and Applications, 30, 609–638.

    Article  Google Scholar 

  14. Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  15. Izhikevich, E. M., & Edelman, G. M. (2007). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105, 3593–3598.

    Article  Google Scholar 

  16. Jack, J. J. B., Noble, D., & Tsien, R. W. (1975). Electric current flow in excitable cells. Oxford: Calderon Press.

    Google Scholar 

  17. Kellems, A. R., Chaturantabut, S., Sorensen, D. C., & Cox, S. J. (2010). Morphologically accurate reduced order modeling of spiking neurons. Journal of Computational Neuroscience, 28, 477–494.

    PubMed  Article  Google Scholar 

  18. Kellems, A. R., Roos, D., Xiao, N., & Cox, S. J. (2009). Low-dimensional, morphologically accurate models of subthreshold membrane potential. Journal of Computational Neuroscience, 27, 161–176.

    PubMed  Article  Google Scholar 

  19. Koch, C. (1999). Biophysics of computation. Oxford: Oxford University Press.

    Google Scholar 

  20. Markram, H. (2006). The blue brain project. Nature Reviews. Neuroscience, 7, 153–160.

    PubMed  Article  CAS  Google Scholar 

  21. Moore, B. C. (1981). Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control, 26, 17–31.

    Article  Google Scholar 

  22. Odabasioglu, A. (1998). Prima: Passive reduced-order interconnect macromodeling algorithm. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 17, 645–654.

    Article  Google Scholar 

  23. Pillage, L. T., & Rohrer, R. A. (1990). Asymptic waveform evaluation for timing analysis. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 9, 352–366.

    Article  Google Scholar 

  24. Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527.

    PubMed  Article  CAS  Google Scholar 

  25. Rall, W. (1964). Theoretical significance of dendrite trees for neuronal input-output relations. In R. Reiss (Ed.), Neuronal theory and modeling (pp. 73–97). Stanford: Stanford University Press.

    Google Scholar 

  26. Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distribution of synaptic inputs. Journal of Neurophysiology, 30, 1138–1168.

    PubMed  CAS  Google Scholar 

  27. Rapp, Y., Koch, C., & Segev, I. (1992). The impact of parallel fiber background activity on the cable properties of cerebellar purkinje cells. Neural Computation, 4, 518–532.

    Article  Google Scholar 

  28. Roberts, C. B., Best, J. A., & Suter, K. J. (2010). Dendritic processing of excitatory synaptic input in hypothalamic gonadotropin releasing-hormone neurons. Endocrinology, 147, 1545–1555.

    Article  Google Scholar 

  29. Saad, Y. (2003). Iterative methods for sparse linear systems. Philadelphia: Society of Industrial and Applied Mathematic (SIAM).

    Book  Google Scholar 

  30. Salimbahrami, B., & Lohmann, B. (2002). Krylov subspace methods in linear model order reduction: Introduction and invariance properties. Scientific Report, Institute of Automation, University of Bremen.

  31. Segev, I. (1992). Single neurone models: Oversimple, complex and reduced. TINS 15, 414–421.

    PubMed  CAS  Google Scholar 

  32. Single, S., & Borst, A. (1998). Dendritic integration and its role in computing image velocity. Science, 281, 1848–1850.

    PubMed  Article  CAS  Google Scholar 

  33. Spruston, N. (2008). Pyramidal neurons: Dendritic structure and synaptic integration. Nature Reviews. Neuroscience, 9, 206–221.

    PubMed  Article  CAS  Google Scholar 

  34. Stein, R., Gossen, E., & Jones, K. (2005). Neuronal variability: noise or part of the signal? Nature Reviews. Neuroscience, 6, 389–397.

    PubMed  Article  CAS  Google Scholar 

  35. Stewart, G. W. (2001), Matrix algorithms: Eigensystems. Philadelphia: Society of Industrial and Applied Mathematic (SIAM).

    Book  Google Scholar 

  36. Villemagne, C. D., & Skelton, R. E. (1987). Model reduction using a projection formulation. International Journal of Control, 46, 2141–2169.

    Article  Google Scholar 

  37. Wilson, M. A., & Bower, J. M. (1989). The simulation of large scale neural networks. In C. Koch, & I. Segev (Eds.), Methods in neuronal modeling (pp. 291–333). Stanford: MIT Press.

    Google Scholar 

  38. Yan, B., Zhou, L., Tan, S., Chen, J., & McGaughy, B. (2008). DeMOR: Decentralized model order reduction of linear networks with massive ports. In Proc. Design Automation Conf. (DAC) (pp. 409–414).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Boyuan Yan.

Additional information

Action Editor: James M. Bower

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yan, B., Li, P. Reduced order modeling of passive and quasi-active dendrites for nervous system simulation. J Comput Neurosci 31, 247–271 (2011). https://doi.org/10.1007/s10827-010-0309-5

Download citation

Keywords

  • Passive dendrites
  • Quasi-active dendrites
  • Reduced modeling
  • Computer simulation