A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells

An Erratum to this article is available

Abstract

Despite the central position of CA3 pyramidal cells in the hippocampal circuit, the experimental investigation of their synaptic properties has been limited. Recent slice experiments from adult rats characterized AMPA and NMDA receptor unitary synaptic responses in CA3b pyramidal cells. Here, excitatory synaptic activation is modeled to infer biophysical parameters, aid analysis interpretation, explore mechanisms, and formulate predictions by contrasting simulated somatic recordings with experimental data. Reconstructed CA3b pyramidal cells from the public repository NeuroMorpho.Org were used to allow for cell-specific morphological variation. For each cell, synaptic responses were simulated for perforant pathway and associational/commissural synapses. Means and variability for peak amplitude, time-to-peak, and half-height width in these responses were compared with equivalent statistics from experimental recordings. Synaptic responses mediated by AMPA receptors are best fit with properties typical of previously characterized glutamatergic receptors where perforant path synapses have conductances twice that of associational/commissural synapses (0.9 vs. 0.5 nS) and more rapid peak times (1.0 vs. 3.3 ms). Reanalysis of passive-cell experimental traces using the model shows no evidence of a CA1-like increase of associational/commissural AMPA receptor conductance with increasing distance from the soma. Synaptic responses mediated by NMDA receptors are best fit with rapid kinetics, suggestive of NR2A subunits as expected in mature animals. Predictions were made for passive-cell current clamp recordings, combined AMPA and NMDA receptor responses, and local dendritic depolarization in response to unitary stimulations. Models of synaptic responses in active cells suggest altered axial resistivity and the presence of synaptically activated potassium channels in spines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Amaral, D. G., Ishizuka, N., & Claiborne, B. (1990). Neurons, numbers and the hippocampal network. Progress in Brain Research, 83, 1–11.

    PubMed  Article  CAS  Google Scholar 

  2. Amaral, D. G., & Witter, M. P. (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 31, 571–591.

    PubMed  Article  CAS  Google Scholar 

  3. Andrásfalvy, B. K., & Magee, J. C. (2001). Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 21, 9151–9159.

    PubMed  Google Scholar 

  4. Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: a central resource for neuronal morphologies. Journal of Neuroscience, 27, 9247–9251.

    PubMed  Article  CAS  Google Scholar 

  5. Baker, J. L., & Olds, J. L. (2007). Theta phase precession emerges from a hybrid computational model of a CA3 place cell. Cognitive Neurodynamics, 1, 237–248.

    PubMed  Article  Google Scholar 

  6. Bekkers, J. M., & Stevens, C. F. (1996). Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs. Journal of Neurophysiology, 75, 1250–1255.

    PubMed  CAS  Google Scholar 

  7. Berzhanskaya, J., Urban, N. N., & Barrionuevo, G. (1998). Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. Journal of Neurophysiology, 79, 2111–2118.

    PubMed  CAS  Google Scholar 

  8. Bloodgood, B. L., & Sabatini, B. L. (2007). Nonlinear regulation of unitary synaptic signals by CaV2.3 voltage-sensitive calcium channels located in dendritic spines. Neuron, 53, 249–260.

    PubMed  Article  CAS  Google Scholar 

  9. Cais, O., Sedlacek, M., Horak, M., Dittert, I., & Vyklicky, L., Jr. (2008). Temperature dependence of NR1/NR2B NMDA receptor channels. Neuroscience, 151, 428–438.

    PubMed  Article  CAS  Google Scholar 

  10. Carnevale, N. T., & Hines, M. L. (2005). The NEURON book. New York: Cambridge University Press.

    Google Scholar 

  11. Chen, N., Ren, J., Raymond, L. A., & Murphy, T. H. (2001). Changes in agonist concentration dependence that are a function of duration of exposure suggest N-methyl-d-aspartate receptor nonsaturation during synaptic stimulation. Molecular Pharmacology, 59, 212–219.

    PubMed  CAS  Google Scholar 

  12. Colquhoun, D., Jonas, P., & Sakmann, B. (1992). Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. Journal de Physiologie, 458, 261–287.

    CAS  Google Scholar 

  13. Cull-Candy, S., Brickley, S., & Farrant, M. (2001). NMDA receptor subunits: diversity, development and disease. Current Opinion in Neurobiology, 11, 327–335.

    PubMed  Article  CAS  Google Scholar 

  14. Dalby, N. O., & Mody, I. (2003). Activation of NMDA receptors in rat dentate gyrus granule cells by spontaneous and evoked transmitter release. Journal of Neurophysiology, 90, 786–797.

    PubMed  Article  CAS  Google Scholar 

  15. Dayan, P., & Abbott, L. (2001). Theoretical neuroscience. Cambridge: MIT.

    Google Scholar 

  16. Debanne, D., Guérineau, N. C., Gähwiler, B. H., & Thompson, S. M. (1995). Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures. Journal of Neurophysiology, 73, 1282–1294.

    PubMed  CAS  Google Scholar 

  17. Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. Journal de Physiologie, 507, 237–247.

    Article  CAS  Google Scholar 

  18. Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1999). Heterogeneity of synaptic plasticity at unitary CA3-CA1 and CA3-CA3 connections in rat hippocampal slice cultures. The Journal of Neuroscience, 19, 10664–10671.

    PubMed  CAS  Google Scholar 

  19. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (2nd ed., pp. 1–15). Cambridge: MIT.

    Google Scholar 

  20. Diamond, J. S. (2001). Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. The Journal of Neuroscience, 21, 8328–8338.

    PubMed  CAS  Google Scholar 

  21. Do, V. H., Martinez, C. O., Martinez, J. L., Jr., & Derrick, B. E. (2002). Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. Journal of Neurophysiology, 87, 669–678.

    PubMed  Google Scholar 

  22. Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. A., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. Journal de Physiologie, 563, 345–358.

    Article  CAS  Google Scholar 

  23. Feldmeyer, D., Lübke, J., Silver, R. A., & Sakmann, B. (2002). Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. Journal de Physiologie, 538, 803–822.

    Article  CAS  Google Scholar 

  24. Geiger, J. R., Lübke, J., Roth, A., Frotscher, M., & Jonas, P. (1997). Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron, 18, 1009–1023.

    PubMed  Article  CAS  Google Scholar 

  25. Gentet, L. J., Stuart, G. J., & Clements, J. D. (2000). Direct measurement of specific membrane capacitance in neurons. Biophysical Journal, 79, 314–320.

    PubMed  Article  CAS  Google Scholar 

  26. Golding, N. L., Mickus, T. J., Katz, Y., Kath, W. L., & Spruston, N. (2005). Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. Journal de Physiologie, 568, 69–82.

    Article  CAS  Google Scholar 

  27. Hemond, P., Epstein, D., Boley, A., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2008). Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus, 18, 411–424.

    PubMed  Article  Google Scholar 

  28. Hemond, P., Migliore, M., Ascoli, G. A., & Jaffe, D. B. (2009). The membrane response of CA3b pyramidal neurons near rest: heterogeneity of passive properties and the contribution of hyperpolarization-activated currents. Neuroscience, 160, 359–370.

    PubMed  Article  CAS  Google Scholar 

  29. Henze, D., Cameron, W. E., & Barrionuevo, G. (1996). Dendritic morphology and its effects on the amplitude and rise-time of synaptic signals in hippocampal CA3 pyramidal cells. The Journal of Comparative Neurology, 369, 331–344.

    PubMed  Article  CAS  Google Scholar 

  30. Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: a database to support computational neuroscience. Journal of Computational Neuroscience, 17, 7–11.

    PubMed  Article  Google Scholar 

  31. Hjorth-Simonsen, A. (1973). Some intrinsic connections of the hippocampus in the rat: an experimental analysis. The Journal of Comparative Neurology, 147, 145–161.

    PubMed  Article  CAS  Google Scholar 

  32. Holmes, W. R., Ambros-Ingerson, J., & Grover, L. M. (2006). Fitting experimental data to models that use morphological data from public databases. Journal of Computational Neuroscience, 20, 349–365.

    PubMed  Article  CAS  Google Scholar 

  33. Iansek, R., & Redman, S. J. (1973). The amplitude, time course, and charge of unitary excitatory post-synaptic potentials evoked in spinal motoneurone dendrites. Journal de Physiologie, 234, 665–688.

    CAS  Google Scholar 

  34. Ishizuka, N., Cowan, W. M., & Amaral, D. G. (1995). A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. The Journal of Comparative Neurology, 362, 17–45.

    PubMed  Article  CAS  Google Scholar 

  35. Jaffe, D. B., & Carnevale, N. T. (1999). Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiology, 82, 3268–3285.

    PubMed  CAS  Google Scholar 

  36. Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. The Journal of Neuroscience, 10, 3178–3182.

    PubMed  CAS  Google Scholar 

  37. Jonas, P., & Sakmann, B. (1992). Glutamate receptor channels in isolated patches from CA1 and CA3 pyramidal cells of rat hippocampal slices. Journal de Physiologie, 455, 143–171.

    CAS  Google Scholar 

  38. Jonas, P., Major, G., & Sakmann, B. (1993). Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. Journal de Physiologie, 472, 615–663.

    CAS  Google Scholar 

  39. Káli, S., & Dayan, P. (2000). The involvement of recurrent connections in area CA3 in establishing the properties of place fields: a model. The Journal of Neuroscience, 20, 7463–7477.

    PubMed  Google Scholar 

  40. Khazipov, R., Ragozzino, D., & Bregestovski, P. (1995). Kinetics and Mg2+ block of N-methyl-d-aspartate receptor channels during postnatal development of hippocampal CA3 pyramidal neurons. Neuroscience, 69, 1057–1065.

    PubMed  Article  CAS  Google Scholar 

  41. Lazarewicz, M. T., Migliore, M., & Ascoli, G. A. (2002). A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Biosystems, 67, 129–137.

    PubMed  Article  CAS  Google Scholar 

  42. Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895–903.

    PubMed  Article  CAS  Google Scholar 

  43. Major, G., Larkman, A. U., Jonas, P., Sakmann, B., & Jack, J. J. B. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience, 14, 4613–4638.

    PubMed  CAS  Google Scholar 

  44. Marr, D. (1971). Simple memory: a theory for archicortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 262, 23–81.

    PubMed  Article  CAS  Google Scholar 

  45. Matsuda, S., Kobayashi, Y., & Ishizuka, N. (2004). A quantitative analysis of the laminar distribution of synaptic boutons in field CA3 of the rat hippocampus. Neuroscience Research, 49, 241–252.

    PubMed  Article  Google Scholar 

  46. McMahon, D. B., & Barrionuevo, G. (2002). Short- and long-term plasticity of the perforant path synapse in hippocampal area CA3. Journal of Neurophysiology, 88, 528–533.

    PubMed  Google Scholar 

  47. Megías, M., Emri, Z., Freund, T. F., & Gulyás, A. I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102, 527–540.

    PubMed  Article  Google Scholar 

  48. Migliore, M., Hoffman, D. A., Magee, J. C., & Johnston, D. (1999). Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7, 5–15.

    PubMed  Article  CAS  Google Scholar 

  49. Miles, R., & Wong, R. K. S. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. Journal de Physiologie, 373, 397–418.

    CAS  Google Scholar 

  50. Miller, R. G., Jr. (1998). Beyond ANOVA: Basics of applied statistics. New York: Chapman & Hall/CRC.

    Google Scholar 

  51. Nicholson, D., Katz, Y., Trana, R., Kath, W. L., Spruston, N., & Geinisman, Y. (2006). Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron, 50, 431–442.

    PubMed  Article  CAS  Google Scholar 

  52. Palmer, L. M., & Stuart, G. J. (2009). Membrane potential changes in dendritic spines during action potentials and synaptic inputs. The Journal of Neuroscience, 29, 6897–6903.

    PubMed  Article  CAS  Google Scholar 

  53. Perez-Rosello, T., Baker, J. L., Ferrante, M., Iyengar, S., Ascoli, G. A., Barrionuevo, G. (2010). Passive and active shaping of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. Journal of Computational Neuroscience (in press).

  54. R Development Core Team (2009). R: A language and environment for statistical computing [Online]. R Foundation for Statistical Computing. http://www.R-project.org. Accessed October 19, 2009.

  55. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., & Frank, K. (1967). Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. Journal of Neurophysiology, 30, 1169–1193.

    PubMed  CAS  Google Scholar 

  56. Ramón y Cajal, S. (1995). Histology of the nervous system of man and vertebrates. Translation from the French edition by Swanson N, Swanson LW. New York: Oxford University Press.

  57. Rolls, E. T. (1996). A theory of hippocampal function in memory. Hippocampus, 6, 601–620.

    PubMed  Article  CAS  Google Scholar 

  58. Roth, A., & Häusser, M. (2001). Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. Journal de Physiologie, 535, 445–472.

    Article  CAS  Google Scholar 

  59. Samsonovich, A., & McNaughton, B. L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. The Journal of Neuroscience, 17, 5900–5920.

    PubMed  CAS  Google Scholar 

  60. Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20, 11–21.

    Article  CAS  Google Scholar 

  61. Smith, M. A., Ellis-Davies, G. C. R., & Magee, J. C. (2003). Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. Journal de Physiologie, 548, 245–258.

    Article  CAS  Google Scholar 

  62. Spruston, N., & Johnston, D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. Journal of Neurophysiology, 67, 508–529.

    PubMed  CAS  Google Scholar 

  63. Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. Journal de Physiologie, 482, 325–352.

    CAS  Google Scholar 

  64. Svoboda, K., Tank, D. W., & Denk, W. (1996). Direct measurement of coupling between dendritic spines and shafts. Science, 272, 716–719.

    PubMed  Article  CAS  Google Scholar 

  65. Swanson, L. W., Wyss, J. M., & Cowan, W. M. (1978). An autoradiographic study of the organization of intrahippocampal association pathways in the rat. The Journal of Comparative Neurology, 181, 681–715.

    PubMed  Article  CAS  Google Scholar 

  66. Turner, D. A., Li, X. G., Pyapali, G. K., Ylinen, A., & Buzsáki, G. (1995). Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo. The Journal of Comparative Neurology, 356, 580–594.

    PubMed  Article  CAS  Google Scholar 

  67. Vicini, S., Wang, J. F., Li, J. H., Zhu, W. J., Wang, Y. H., Luo, J. H., et al. (1998). Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. Journal of Neurophysiology, 79, 555–566.

    PubMed  CAS  Google Scholar 

  68. Wallenstein, G. V., & Hasselmo, M. E. (1997). GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. Journal of Neurophysiology, 78, 393–408.

    PubMed  CAS  Google Scholar 

  69. Williams, S. H., & Johnston, D. (1991). Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 66, 1010–1020.

    PubMed  CAS  Google Scholar 

Download references

Grants

This work was supported by National Institutes of Health grants AG025633 and NS39600.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giorgio A. Ascoli.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10827-011-0364-6

Action Editor: Alain Destexhe

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baker, J.L., Perez-Rosello, T., Migliore, M. et al. A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci 31, 137–158 (2011). https://doi.org/10.1007/s10827-010-0304-x

Download citation

Keywords

  • AMPA receptor
  • NMDA receptor
  • Hippocampus