Skip to main content

Advertisement

Log in

Synaptic information transfer in computer models of neocortical columns

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Understanding the direction and quantity of information flowing in neuronal networks is a fundamental problem in neuroscience. Brains and neuronal networks must at the same time store information about the world and react to information in the world. We sought to measure how the activity of the network alters information flow from inputs to output patterns. Using neocortical column neuronal network simulations, we demonstrated that networks with greater internal connectivity reduced input/output correlations from excitatory synapses and decreased negative correlations from inhibitory synapses, measured by Kendall’s τ correlation. Both of these changes were associated with reduction in information flow, measured by normalized transfer entropy (nTE). Information handling by the network reflected the degree of internal connectivity. With no internal connectivity, the feedforward network transformed inputs through nonlinear summation and thresholding. With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. This dynamic contribution amounts to added information drawn from that stored in the network. At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldworth, Z., Miller, J., Gedeon, T., Cummins, G., & Dimitrov, A. (2005). Dejittered spike-conditioned stimulus waveforms yield improved estimates of neuronal feature selectivity and spike-timing precision of sensory interneurons. Journal of Neuroscience, 25(22), 5323–5332.

    Article  CAS  PubMed  Google Scholar 

  • Bartos, M., Vida, I., & Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews. Neuroscience, 8(1), 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M., Logothetis, N., et al. (2008). Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. Journal of Neuroscience, 28(22), 5696–5709.

    Article  CAS  PubMed  Google Scholar 

  • Börgers, C., & Kopell, N. (2005). Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Computation, 17, 557–608.

    Article  PubMed  Google Scholar 

  • Brunel, N. (2000). Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons. Journal of Physiology (Paris), 94, 445–463.

    Article  CAS  Google Scholar 

  • Brunel, N., & Wang, X. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. Journal of Neurophysiology, 90, 415–430.

    Article  PubMed  Google Scholar 

  • Buonomano, D. (2009). Harnessing chaos in recurrent neural networks. Neuron, 63, 423–425.

    Article  CAS  PubMed  Google Scholar 

  • Buonomano, D., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nature Reviews. Neuroscience, 10(2), 113–125.

    Article  CAS  PubMed  Google Scholar 

  • Carnevale, N., & Hines, M. (2006). The NEURON book. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Dehaene, S., & Changeux, J. (2005). Ongoing spontaneous activity controls access to consciousness: A neuronal model for inattentional blindness. PLoS Biology, 3(5), e141.

    Article  PubMed  Google Scholar 

  • Destexhe, A., & Contreras, D. (2006). Neuronal computations with stochastic network states. Science, 314(5796), 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A., Mainen, Z., & Sejnowski, T. (1994). An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Computation, 6, 14–18.

    Article  Google Scholar 

  • Douglas, R., Martin, K., & Whitteridge, D. (1989). A canonical microcircuit for neocortex. Neural Computation, 1, 480–488.

    Article  Google Scholar 

  • Edelman, G. (1987). Neural Darwinism: The theory of neuronal group selection. New York: Basic Books.

    Google Scholar 

  • French, R. (1991). Using semi-distributed representations to overcome catastrophic forgetting in connectionist networks. In Proceedings of the 13th annual cognitive science society conference (pp. 173–178). Hillsdale: Erlbaum.

    Google Scholar 

  • Friesen, W., & Friesen, J. (1994). NeuroDynamix, a computer-based system for simulating neuronal properties. New York: Oxford Univ. Press.

    Google Scholar 

  • Gourevitch, B., & Eggermont, J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533–2543.

    Article  PubMed  Google Scholar 

  • Gray, C., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 86, 1698–1702.

    Article  CAS  PubMed  Google Scholar 

  • Halgren, E., Walter, R., Cherlow, D., & Crandall, P. (1978). Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain, 101(1), 83.

    Article  CAS  PubMed  Google Scholar 

  • Hill, S., & Tononi, G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93, 1671–1698.

    Article  PubMed  Google Scholar 

  • Hines, M., & Carnevale, N. (2001). NEURON: A tool for neuroscientists. The Neuroscientist, 7, 123–135.

    Article  CAS  PubMed  Google Scholar 

  • Hlavácková-Schindler, K., Palus, M., Vejmelka, M., & Bhattacharya, J. (2007). Causality detection based on information-theoretic approaches in time series analysis. Physics Reports, 441, 1–46.

    Article  Google Scholar 

  • Izhikevich, E., & Edelman, G. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105(9), 3593–3598.

    Article  CAS  PubMed  Google Scholar 

  • Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304, 78–80.

    Article  CAS  PubMed  Google Scholar 

  • Jumarie, G. (1990). Relative information: Theories and applications. New York: Springer.

    Google Scholar 

  • Kendall, M. (1938). A new measure of rank correlation. Biometrika, 30(1–2), 81–93.

    Google Scholar 

  • Knight, W. (1966). A computer method for calculating Kendall’s tau with ungrouped data. Journal of the American Statistical Association, 61(314), 436–439.

    Article  Google Scholar 

  • Lazar, A., & Pnevmatikakis, E. (2008). Faithful representation of stimuli with a population of integrate-and-fire neurons. Neural Computation, 20(11), 2715–2744.

    Article  PubMed  Google Scholar 

  • Lytton, W. (1996). Optimizing synaptic conductance calculation for network simulations. Neural Computation, 8, 501–510.

    Article  CAS  PubMed  Google Scholar 

  • Lytton, W. (1998). Adapting a feedforward heteroassociative network to Hodgkin–Huxley dynamics. Journal of Computational Neuroscience, 5, 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Lytton, W. (2006). Neural query system: Data-mining from within the NEURON simulator. Neuroinformatics, 4, 163–176.

    Article  PubMed  Google Scholar 

  • Lytton, W., & Omurtag, A. (2007). Tonic-clonic transitions in computer simulation. Journal of Clinical Neurophysiology, 24, 175–181.

    Article  PubMed  Google Scholar 

  • Lytton, W., & Sejnowski, T. (1991). Inhibitory interneurons may help synchronize oscillations in cortical pyramidal neurons. Journal of Neurophysiology, 66, 1059–1079.

    CAS  PubMed  Google Scholar 

  • Lytton, W., & Stewart, M. (2007). Data mining through simulation. Methods in Molecular Biology, 401, 155–166.

    Article  PubMed  Google Scholar 

  • Lytton, W., Neymotin, S., & Hines, M. (2008). The virtual slice setup. Journal of Neuroscience Methods, 171, 309–315.

    Article  PubMed  Google Scholar 

  • Marschinski, R., & Kantz, H. (2002). Analysing the information flow between financial time series. European Physical Journal B, Condensed Matter Physics, 30(2), 275–281.

    CAS  Google Scholar 

  • Mazzoni, A., Panzeri, S., Logothetis, N., & Brunel, N. (2008). Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Computational Biology, 4(12), e1000239.

    Article  PubMed  Google Scholar 

  • McCloskey, M., & Cohen, N. (1989). Catastrophic interference in connectionist networks: The sequential learning problem. Chapter in The psychology of learning and motivation: Advances in research and theory (Vol. 24). Maryland Heights: Academic.

    Google Scholar 

  • McDonnell, M., Stocks, N., Pearce, C., & Abbott, D. (2003). Stochastic resonance and data processing inequality. Electronics Letters (IEEE), 39(17), 1287–1288.

    Article  Google Scholar 

  • Moser, E., & Moser, M. (1999). Is learning blocked by saturation of synaptic weights in the hippocampus. Neuroscience and Biobehavioral Reviews, 23, 661–672.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, S. (2002). Cortical microcircuits: Diverse or canonical. Neuron, 36, 19–27.

    Article  CAS  PubMed  Google Scholar 

  • Paluš, M. (1996). Detecting nonlinearity in multivariate time series. Physics Letters A, 213(3–4), 138–147.

    Google Scholar 

  • Penfield, W. (1958). Some mechanisms of consciousness discovered during electrical stimulation of the brain. Proceedings of the National Academy of Sciences of the United States of America, 44(2), 51–66.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, W., & Silverstein, S. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behavioral and Brain Sciences, 26(01), 65–82.

    Article  PubMed  Google Scholar 

  • Press, W., Teukolsky, S., Vetterling, W., & Flannery, B. (2007). Numerical recipes: The art of scientific computing. Cambridge: Cambridge University Press.

    Google Scholar 

  • Quiroga, R., & Panzeri, S. (2009). Extracting information from neuronal populations: Information theory and decoding approaches. Nature Reviews Neuroscience, 10(3), 173–185.

    Article  Google Scholar 

  • Rao, R., & Sejnowski, T. (2001). Spike-timing-dependent Hebbian plasticity as temporal difference learning. Neural Computation, 13(10), 2221–2237.

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff, R. (1990). Connectionist models of recognition memory: Constraints imposed by learning and forgetting functions. Psychological Review, 97(2), 285–308.

    Article  CAS  PubMed  Google Scholar 

  • Rieke, F., Warland, D., & Bialek, W. (1999). Spikes: Exploring the neural code. Cambridge: MIT.

    Google Scholar 

  • Salinas, E., & Sejnowski, T. (2001). Correlated neuronal activity and the flow of neural information. Nature Reviews Neuroscience, 2(8), 539–550.

    Article  CAS  PubMed  Google Scholar 

  • Salinas, E., & Sejnowski, T. (2002). Integrate-and-fire neurons driven by correlated stochastic input. Neural Computation, 14(9), 2111–2155.

    Article  PubMed  Google Scholar 

  • Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461–464.

    Article  CAS  PubMed  Google Scholar 

  • Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsáki, G. (2008). Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron, 60, 683–697.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, K., Nestor, P., Niznikiewicz, M., Salisbury, D., Shenton, M., & Carley, R. (2003). Abnormal neural synchrony in schizophrenia. Journal of Neuroscience, 23, 7407–7411.

    CAS  PubMed  Google Scholar 

  • Spencer, K., Nestor, P., Perlmutter, R., Niznikiewicz, M., Klump, M., Frumin, M., et al. (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 101, 17288–17293.

    Article  CAS  PubMed  Google Scholar 

  • Sporns, O., Tononi, G., & Kotter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42.

    Article  PubMed  Google Scholar 

  • Tiesinga, P., & Sejnowski, T. (2009). Cortical enlightenment: Are attentional gamma oscillations driven by ing or ping? Neuron, 63(6), 727–732.

    Article  CAS  PubMed  Google Scholar 

  • Traub, R., Jefferys, J., & Whittington, M. (1999). Fast oscillations in cortical circuits. Cambridge: MIT.

    Google Scholar 

  • Uhlhaas, P., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52, 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas, P., Linden, D., Singer, W., Haenschel, C., Lindner, M., Maurer, K., et al. (2006). Dysfunctional long-range coordination of neural activity during gestalt perception in schizophrenia. Journal of Neuroscience, 26, 8168–8175.

    Article  CAS  PubMed  Google Scholar 

  • Uhlrich, D., Manning, K., Laughlin, M., & Lytton, W. (2005). Photic-induced sensitization: Acquisition of an augmenting spike-wave response in the adult rat through repeated strobe exposure. Journal of Neurophysiology, 94, 3925–3937.

    Article  CAS  PubMed  Google Scholar 

  • Victor, J. (2006). Approaches to information-theoretic analysis of neural activity. Biological Theory, 1(3), 302–316.

    Article  PubMed  Google Scholar 

  • Vogels, T., Rajan, K., & Abbott, L. (2005). Neural network dynamics. Annual Review of Neuroscience, 28, 357–376.

    Article  CAS  PubMed  Google Scholar 

  • Von der Malsburg, C., & Schneider, W. (1986). A neural cocktail-party processor. Biological Cybernetics, 54, 29–40.

    Article  PubMed  Google Scholar 

  • Wang, X., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.

    CAS  PubMed  Google Scholar 

  • Zhu, J., Lytton, W., Xue, J., & Uhlrich, D. (1999a). An intrinsic oscillation in interneurons of the rat lateral geniculate nucleus. Journal of Neurophysiology, 81, 702–711.

    CAS  PubMed  Google Scholar 

  • Zhu, J., Uhlrich, D., & Lytton, W. (1999b). Burst firing in identified interneurons of the rat lateral geniculate nucleus. Neuroscience, 91, 1445–1460.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their insightful comments and suggestions on improvement of the manuscript.

We also thank Michael Hines and Ted Carnevale (Yale) for continuing support and assistance with the NEURON simulator, Andrey Olypher (Emory) for helpful discussions, Matthew Lazenka (VCU) for assistance with development of the neocortical model, and Larry Eberle (SUNY Downstate) for administration and network support at the Neurosimulation laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Neymotin.

Additional information

Action Editor: P. Dayan

This research was supported by NIH grants MH082417 and MH057068 and by DARPA grant N66001-10-C-2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neymotin, S.A., Jacobs, K.M., Fenton, A.A. et al. Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci 30, 69–84 (2011). https://doi.org/10.1007/s10827-010-0253-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0253-4

Keywords

Navigation