Journal of Computational Neuroscience

, Volume 29, Issue 3, pp 389–403 | Cite as

Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials

Intracellular-LFP transfer function
  • Claude Bédard
  • Serafim Rodrigues
  • Noah Roy
  • Diego Contreras
  • Alain Destexhe
Article

Abstract

We examine the properties of the transfer function FT = Vm / VLFP between the intracellular membrane potential (Vm) and the local field potential (VLFP) in cerebral cortex. We first show theoretically that, in the subthreshold regime, the frequency dependence of the extracellular medium and that of the membrane potential have a clear incidence on FT. The calculation of FT from experiments and the matching with theoretical expressions is possible for desynchronized states where individual current sources can be considered as independent. Using a mean-field approximation, we obtain a method to estimate the impedance of the extracellular medium without injecting currents. We examine the transfer function for bipolar (differential) LFPs and compare to simultaneous recordings of Vm and VLFP during desynchronized states in rat barrel cortex in vivo. The experimentally derived FT matches the one derived theoretically, only if one assumes that the impedance of the extracellular medium is frequency-dependent, and varies as \(1/\sqrt{\omega}\) (Warburg impedance) for frequencies between 3 and 500 Hz. This constitutes indirect evidence that the extracellular medium is non-resistive, which has many possible consequences for modeling LFPs.

Keywords

Computational models Local field potentials EEG Extracellular resistivity Intracellular recordings Maxwell equations 

References

  1. Bédard, C., & Destexhe, A. (2008). A modified cable formalism for modeling neuronal membranes at high frequencies. Biophysics Journal, 94(4), 1133–1143.CrossRefGoogle Scholar
  2. Bédard, C., & Destexhe, A. (2009). Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophysics Journal, 96(7), 2589–4608.CrossRefGoogle Scholar
  3. Bédard, C., Kröger, H., & Destexhe, A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysics Journal, 64, 1829–1842.CrossRefGoogle Scholar
  4. Bédard, C., Kröger, H., & Destexhe, A. (2006a). Does the 1/f frequency-scaling of brain signals reflect self-organized critical states? Physics Review Letters, 97, 118102.CrossRefGoogle Scholar
  5. Bédard, C., Kröger, H., & Destexhe, A. (2006b). Model of low-pass filtering of local field potentials in brain tissue. Physics Review, E, 73, 051911.CrossRefGoogle Scholar
  6. Chari, M. V. K., & Salon, S. J. (1999). Numerical methods in electromagnetism. New York: Academic.Google Scholar
  7. Contreras, D., & Steriade, M. (1996). State-dependent fluctuations of low-frequency rhythms in corticothalamic networks. Neuroscience, 76, 25–38.CrossRefGoogle Scholar
  8. Destexhe, A., Contreras, D., & Steriade, M. (1999). Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. Journal of Neuroscience, 19, 4595–4608.PubMedGoogle Scholar
  9. Destexhe, A., Rudolph, M., Fellous, J.-M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in-vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24.CrossRefPubMedGoogle Scholar
  10. Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews. Neuroscience, 4, 739–751.CrossRefPubMedGoogle Scholar
  11. ELBoustani, S., Marre, O., Béhuret, S., Baudot, P., Yger, P., Bal, T., et al. (2009). Network-state modulation of power-law frequency-scaling in visual cortical neurons. PLoS Computational Biology, 5, 1–18.Google Scholar
  12. Erchova, I., & McGonigle, D. J. (2008). Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos, 18, 015115.CrossRefPubMedGoogle Scholar
  13. Gabriel, S., Lau, R.W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine & Biology, 41, 2251–2269.CrossRefGoogle Scholar
  14. Gawne, T. J., & Richmond, B. J. (1993). How independent are the messages carried by adjacent inferior temporal cortical neurons? Journal of Neuroscience, 13, 2758–2771.PubMedGoogle Scholar
  15. Gold, C., Henze, D. A., Koch, C., & Buzsaki, G. (2006). On the origin of the extracellular action potential waveform: A modeling study. Journal of Neurophysiology, 95, 3113–3128.CrossRefPubMedGoogle Scholar
  16. Hines, M., & Carnevale, N. (1997). The neuron simulation environment. Neural Computation, 9, 1179–1209.CrossRefPubMedGoogle Scholar
  17. Jefferys, J. G. R. (1995). Nonsynaptic modulation of neuronal activity in the brain: Electric currents and extracellular ions. Physiological Reviews, 75(4), 689–714.PubMedGoogle Scholar
  18. Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61, 35–41.CrossRefPubMedGoogle Scholar
  19. Logothetis, N. K., Kayser, C., & Oeltermann, A. (2007). In vivo measurement of cortical impedance spectrum in monkeys: Implications for signal propagation. Neuron, 55, 809–823.CrossRefPubMedGoogle Scholar
  20. Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. New York: Oxford University Press.CrossRefGoogle Scholar
  21. Pettersen, K. H., & Einevoll, G. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophysics Journal, 94(3), 784–802.CrossRefGoogle Scholar
  22. Poulet, J. F., & Petersen, C. C. (2008). Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature, 454, 881–885.CrossRefPubMedGoogle Scholar
  23. Press, W., Teukolsky, P., Vetterlin, W., & Flannery, B. (2008). Numerical recipes in C: The art of scientific computating. ISBN 0-521-43108-5.Google Scholar
  24. Ranck, J. B., Jr. (1963). Specific impedance of rabbit cerebral cortex. Experimental Neurology, 7, 144–152.CrossRefPubMedGoogle Scholar
  25. Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al. (2010). The asynchronous state in cortical circuits. Science, 327, 587–590.CrossRefPubMedGoogle Scholar
  26. Rudolph, M., Pelletier, J. G., Paré, D., & Destexhe, A. (2005). Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons in vivo. Journal of Neurophysiology, 94, 2805–2821.CrossRefPubMedGoogle Scholar
  27. Steriade, M. (2001). The intact and sliced brain. Cambridge, MA: MIT Press.Google Scholar
  28. Steriade, M., Timofeev, I., & Grenier, F. (2001a). Natural waking and sleep states: A view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.PubMedGoogle Scholar
  29. Wilent, W. B., & Contreras, D. (2005a). Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nature Neuroscience, 8, 1364–1370.CrossRefPubMedGoogle Scholar
  30. Wilent, W. B., & Contreras, D. (2005b). Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons. Journal of Neuroscience, 25, 2983–2991.CrossRefPubMedGoogle Scholar
  31. Yaron-Yakoubovitch, A., Jacobson, G. A., Koch, C., Segev, I., & Yarom, Y. (2008). A paradoxical isopotentiality: A spatially uniform noise spectrum in neocortical pyramidal cells. Frontiers in Cellular Neuroscience, 2, 1–9.Google Scholar
  32. Zohary, E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370, 140–143.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Claude Bédard
    • 1
  • Serafim Rodrigues
    • 1
  • Noah Roy
    • 2
  • Diego Contreras
    • 2
  • Alain Destexhe
    • 1
  1. 1.Integrative and Computational Neuroscience Unit (UNIC), UPR2191CNRSGif-sur-YvetteFrance
  2. 2.Department of NeuroscienceUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations