# Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials

- 436 Downloads
- 29 Citations

## Abstract

We examine the properties of the transfer function *F* _{ T } = *V* _{ m } / *V* _{LFP} between the intracellular membrane potential (*V* _{ m }) and the local field potential (*V* _{LFP}) in cerebral cortex. We first show theoretically that, in the subthreshold regime, the frequency dependence of the extracellular medium and that of the membrane potential have a clear incidence on *F* _{ T }. The calculation of *F* _{ T } from experiments and the matching with theoretical expressions is possible for desynchronized states where individual current sources can be considered as independent. Using a mean-field approximation, we obtain a method to estimate the impedance of the extracellular medium without injecting currents. We examine the transfer function for bipolar (differential) LFPs and compare to simultaneous recordings of *V* _{ m } and *V* _{LFP} during desynchronized states in rat barrel cortex *in vivo*. The experimentally derived *F* _{ T } matches the one derived theoretically, only if one assumes that the impedance of the extracellular medium is frequency-dependent, and varies as \(1/\sqrt{\omega}\) (Warburg impedance) for frequencies between 3 and 500 Hz. This constitutes indirect evidence that the extracellular medium is non-resistive, which has many possible consequences for modeling LFPs.

## Keywords

Computational models Local field potentials EEG Extracellular resistivity Intracellular recordings Maxwell equations## Notes

### Acknowledgements

Research supported by the Centre National de la Recherche Scientifique (CNRS, France), Agence Nationale de la Recherche (ANR, France) and the Future and Emerging Technologies program (FET, European Union; FACETS project). Additional information is available at http://cns.iaf.cnrs-gif.fr.

## References

- Bédard, C., & Destexhe, A. (2008). A modified cable formalism for modeling neuronal membranes at high frequencies.
*Biophysics Journal, 94(4)*, 1133–1143.CrossRefGoogle Scholar - Bédard, C., & Destexhe, A. (2009). Macroscopic models of local field potentials and the apparent 1/f noise in brain activity.
*Biophysics Journal, 96(7)*, 2589–4608.CrossRefGoogle Scholar - Bédard, C., Kröger, H., & Destexhe, A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space.
*Biophysics Journal, 64*, 1829–1842.CrossRefGoogle Scholar - Bédard, C., Kröger, H., & Destexhe, A. (2006a). Does the 1/f frequency-scaling of brain signals reflect self-organized critical states?
*Physics Review Letters, 97*, 118102.CrossRefGoogle Scholar - Bédard, C., Kröger, H., & Destexhe, A. (2006b). Model of low-pass filtering of local field potentials in brain tissue.
*Physics Review, E, 73*, 051911.CrossRefGoogle Scholar - Chari, M. V. K., & Salon, S. J. (1999).
*Numerical methods in electromagnetism*. New York: Academic.Google Scholar - Contreras, D., & Steriade, M. (1996). State-dependent fluctuations of low-frequency rhythms in corticothalamic networks.
*Neuroscience, 76*, 25–38.CrossRefGoogle Scholar - Destexhe, A., Contreras, D., & Steriade, M. (1999). Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states.
*Journal of Neuroscience, 19*, 4595–4608.PubMedGoogle Scholar - Destexhe, A., Rudolph, M., Fellous, J.-M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate
*in-vivo*-like activity in neocortical neurons.*Neuroscience, 107*, 13–24.CrossRefPubMedGoogle Scholar - Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons
*in vivo*.*Nature Reviews. Neuroscience, 4*, 739–751.CrossRefPubMedGoogle Scholar - ELBoustani, S., Marre, O., Béhuret, S., Baudot, P., Yger, P., Bal, T., et al. (2009). Network-state modulation of power-law frequency-scaling in visual cortical neurons.
*PLoS Computational Biology, 5*, 1–18.Google Scholar - Erchova, I., & McGonigle, D. J. (2008). Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data.
*Chaos, 18*, 015115.CrossRefPubMedGoogle Scholar - Gabriel, S., Lau, R.W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz.
*Physics in Medicine & Biology, 41*, 2251–2269.CrossRefGoogle Scholar - Gawne, T. J., & Richmond, B. J. (1993). How independent are the messages carried by adjacent inferior temporal cortical neurons?
*Journal of Neuroscience, 13*, 2758–2771.PubMedGoogle Scholar - Gold, C., Henze, D. A., Koch, C., & Buzsaki, G. (2006). On the origin of the extracellular action potential waveform: A modeling study.
*Journal of Neurophysiology, 95*, 3113–3128.CrossRefPubMedGoogle Scholar - Hines, M., & Carnevale, N. (1997). The neuron simulation environment.
*Neural Computation, 9*, 1179–1209.CrossRefPubMedGoogle Scholar - Jefferys, J. G. R. (1995). Nonsynaptic modulation of neuronal activity in the brain: Electric currents and extracellular ions.
*Physiological Reviews, 75(4)*, 689–714.PubMedGoogle Scholar - Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex.
*Neuron, 61*, 35–41.CrossRefPubMedGoogle Scholar - Logothetis, N. K., Kayser, C., & Oeltermann, A. (2007).
*In vivo*measurement of cortical impedance spectrum in monkeys: Implications for signal propagation.*Neuron, 55*, 809–823.CrossRefPubMedGoogle Scholar - Nunez, P. L., & Srinivasan, R. (2006).
*Electric fields of the brain: The neurophysics of EEG*. New York: Oxford University Press.CrossRefGoogle Scholar - Pettersen, K. H., & Einevoll, G. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes.
*Biophysics Journal, 94(3)*, 784–802.CrossRefGoogle Scholar - Poulet, J. F., & Petersen, C. C. (2008). Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice.
*Nature, 454*, 881–885.CrossRefPubMedGoogle Scholar - Press, W., Teukolsky, P., Vetterlin, W., & Flannery, B. (2008).
*Numerical recipes in C: The art of scientific computating*. ISBN 0-521-43108-5.Google Scholar - Ranck, J. B., Jr. (1963). Specific impedance of rabbit cerebral cortex.
*Experimental Neurology, 7*, 144–152.CrossRefPubMedGoogle Scholar - Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al. (2010). The asynchronous state in cortical circuits.
*Science, 327*, 587–590.CrossRefPubMedGoogle Scholar - Rudolph, M., Pelletier, J. G., Paré, D., & Destexhe, A. (2005). Characterization of synaptic conductances and integrative properties during electrically induced EEG-activated states in neocortical neurons
*in vivo*.*Journal of Neurophysiology, 94*, 2805–2821.CrossRefPubMedGoogle Scholar - Steriade, M. (2001).
*The intact and sliced brain*. Cambridge, MA: MIT Press.Google Scholar - Steriade, M., Timofeev, I., & Grenier, F. (2001a). Natural waking and sleep states: A view from inside neocortical neurons.
*Journal of Neurophysiology, 85*, 1969–1985.PubMedGoogle Scholar - Wilent, W. B., & Contreras, D. (2005a). Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex.
*Nature Neuroscience, 8*, 1364–1370.CrossRefPubMedGoogle Scholar - Wilent, W. B., & Contreras, D. (2005b). Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons.
*Journal of Neuroscience, 25*, 2983–2991.CrossRefPubMedGoogle Scholar - Yaron-Yakoubovitch, A., Jacobson, G. A., Koch, C., Segev, I., & Yarom, Y. (2008).
*A paradoxical isopotentiality: A spatially uniform noise spectrum in neocortical pyramidal cells*.*Frontiers in Cellular Neuroscience, 2*, 1–9.Google Scholar - Zohary, E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance.
*Nature, 370*, 140–143.CrossRefPubMedGoogle Scholar