Local field potentials indicate network state and account for neuronal response variability

Abstract

Multineuronal recordings have revealed that neurons in primary visual cortex (V1) exhibit coordinated fluctuations of spiking activity in the absence and in the presence of visual stimulation. From the perspective of understanding a single cell’s spiking activity relative to a behavior or stimulus, these network fluctuations are typically considered to be noise. We show that these events are highly correlated with another commonly recorded signal, the local field potential (LFP), and are also likely related to global network state phenomena which have been observed in a number of neural systems. Moreover, we show that attributing a component of cell firing to these network fluctuations via explicit modeling of the LFP improves the recovery of cell properties. This suggests that the impact of network fluctuations may be estimated using the LFP, and that a portion of this network activity is unrelated to the stimulus and instead reflects ongoing cortical activity. Thus, the LFP acts as an easily accessible bridge between the network state and the spiking activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abbott, L. F., & Dayan, P. (1999). The effect of correlated variability on the accuracy of a population code. Neural Computation, 11, 91–101.

    CAS  Article  PubMed  Google Scholar 

  2. Areili, A., Sterkin, A., Grinvald, A., & Aertson, A. (1996). Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science, 273(5283), 1868–1871.

    Article  Google Scholar 

  3. Averbeck, B. B., Latham, P. E., & Pouget, A. P. (2006). Neural correlations, population coding and computation. Nature Reviews. Neuroscience, 7, 358–366.

    CAS  Article  PubMed  Google Scholar 

  4. Bair, W., Zohary, E., & Newsome, W. T. (2001). Correlated firing in macaque visual area MT: Time scales and relationship to behavior. Journal of Neuroscience, 21, 1676–1697.

    CAS  PubMed  Google Scholar 

  5. Berens, P., Keliris, G., Ecker, A., Logothetis, N., & Tolias, A. (2008). Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex. Frontiers in Neuroscience, 2, 199–207.

    Article  PubMed  Google Scholar 

  6. Buzsaki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience, 7, 446–451.

    CAS  Article  PubMed  Google Scholar 

  7. Cavanaugh, J. R., Bair, W., & Movshon, J. A. (2002). Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of Neurophysiology, 88, 2530–2546.

    Article  PubMed  Google Scholar 

  8. David, S., Vinje, W., & Gallant, J. (2004). Natural stimulus statistics alter the receptive field structure of V1 neurons. Journal of Neuroscience, 24, 6991–7006.

    CAS  Article  PubMed  Google Scholar 

  9. Destexhe, A., & Contreras, D. (2006). Neuronal computations with stochastic network states. Science, 314, 85–90.

    CAS  Article  PubMed  Google Scholar 

  10. DeValois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque visual cortex. Vision Research, 22, 545–559.

    CAS  Article  Google Scholar 

  11. Eggermont, J., & Smith, G. (1995). Synchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortex. Journal of Neurophysiology, 73, 227–245.

    CAS  PubMed  Google Scholar 

  12. Foster, K. H., Gaska, J. P., Nagler, M., & Pollen, D. A. (1985). Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the Macaque monkey. Journal of Physiology, 365, 331–363.

    CAS  PubMed  Google Scholar 

  13. Frien, A., Eckhorn, R., Bauer, R., Woelbern, T., & Gabriel, A. (2000). Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey. European Journal of Neuroscience, 12, 1453–1465.

    CAS  Article  PubMed  Google Scholar 

  14. Gray, C. M., Maldonado, P. E., Wilson, M., & McNaughton, B. (1995). Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. Journal of Neuroscience Methods, 63, 43–54.

    CAS  Article  PubMed  Google Scholar 

  15. Hardin, J. W., & Hilbe, J. (2007). Generalized linear models and extensions. College Station: Stata.

    Google Scholar 

  16. Haslinger, R., Ulbert, I., Moore, C., Brown, E., & Devor, A. (2006). Analysis of LFP phase predicts sensort response of barrel cortex. Journal of Neurophysiology, 96, 1658–1663.

    CAS  Article  PubMed  Google Scholar 

  17. He, B., Snyder, A., Zempel, J., Smyth, M., & Raichle, M. (2008). Electrophysiological correlates of the brains intrinsic large-scale functional architecture. Proceedings of the National Academy of Sciences of the United States of America, 105, 16039–16044.

    CAS  Article  PubMed  Google Scholar 

  18. Henrie, J., & Shapley, R. (2005). LFP power spectra in V1 cortex: The graded effect of stimulus contrast. Journal of Neurophysiology, 94, 479–490.

    Article  PubMed  Google Scholar 

  19. Huang, X., & Lisberger, S. (2009). Noise correlations in cortical area MT and their potential impact on trial-by-trial variation in the direction and speed of smooth pursuit eye movements. Journal of Neurophysiology, 101, 3012–3030.

    Article  PubMed  Google Scholar 

  20. Johnson, H., & Buonomano, D. (2007). Development and plasticity of spontaneous activity and up states in cortical organotypic slices. Journal of Neuroscience, 27(22), 5915–5925.

    CAS  Article  PubMed  Google Scholar 

  21. Kass, R., & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13, 1713–1720.

    CAS  Article  PubMed  Google Scholar 

  22. Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61, 35–41.

    CAS  Article  PubMed  Google Scholar 

  23. Kelly, R. C., Smith, M. A., Samonds, J. M., Kohn, A., Bonds, A. B., Movshon, J. A., et al. (2007). Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. Journal of Neuroscience, 27, 261–264.

    CAS  Article  PubMed  Google Scholar 

  24. Kohn, A., & Smith, M. A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the Macaque. Journal of Neuroscience, 25, 3661–3673.

    CAS  Article  PubMed  Google Scholar 

  25. Kohn, A., Zandvakili, A., & Smith, M. A. (2009). Correlations and brain states: From electrophysiology to functional imaging. Current Opinion in Neurobiology, 19, 434–438.

    CAS  Article  PubMed  Google Scholar 

  26. Körding, K., Kayser, C., Einhäuser, W., & König, P. (2004). How are complex cell properties adapted to the statistics of natural stimuli? Journal of Neurophysiology, 91, 206–212.

    Article  PubMed  Google Scholar 

  27. Kreiman, G., Hung, C., Kraskov, A., Quiroga, R., Poggio, T., & DiCarlo, J. (2006). Object selectivity of local field potentials and spikes in the Macaque inferior temporal cortex. Neuron, 49, 433–445.

    CAS  Article  PubMed  Google Scholar 

  28. Kruse, W., & Eckhorn, R. (1996). Inhibition of sustained gamma oscillations (35–80 Hz) by fast transient responses in cat visual cortex. Proceedings of the National Academy of Sciences, 93, 6112–6117.

    CAS  Article  Google Scholar 

  29. Lampl, I., Reichova, I., & Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22, 361–374.

    CAS  Article  PubMed  Google Scholar 

  30. Legatt, A. D., Arezzo, J., & Vaughan, H. G. (1980). Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: Effects of volume-conducted potentials. Journal of Neuroscience Methods, 2, 203–217.

    CAS  Article  PubMed  Google Scholar 

  31. Leopold, D. A., Murayama, Y., & Logothetis, N. K. (2003). Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cerebral Cortex, 13, 422–433.

    Article  PubMed  Google Scholar 

  32. Liu, J., & Newsome, W. (2006). Local field potential in cortical area MT: Stimulus tuning and behavioral correlations. Journal of Neuroscience, 26, 7779–7790.

    CAS  Article  PubMed  Google Scholar 

  33. Luczak, A., Bartho, P., Marguet, S., Buzsaki, G., & Harris, K. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 347–352.

    CAS  Article  PubMed  Google Scholar 

  34. Mitzdorf, U. (1987). Properties of the evoked potential generators: Current source-density analysis of visually evoked potentials in the cat cortex. International Journal of Neuroscience, 33, 33–59.

    CAS  Article  PubMed  Google Scholar 

  35. Nauhaus, I., Busse, L., Carandini, M., & D.L., R. (2009). Stimulus contrast modulates functional connectivity in visual cortex. Nature Neuroscience, 12, 70–76.

    CAS  Article  PubMed  Google Scholar 

  36. Nir, Y., Mukamel, R., Dinstein, I., Privman, E., Harel, M., Fisch, L., et al. (2008). Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nature Neuroscience, 11(9), 1100–1108.

    CAS  Article  PubMed  Google Scholar 

  37. Paninski, L. (2004). Maximum likelihood estimation of cascade point-process encoding models. Network: Computation in Neural Systems, 15, 243–262.

    Article  Google Scholar 

  38. Paninski, L., Brown, E., Iyengar, S., & Kass, R. (2009). Statistical models of spike trains. In C. Liang, & G. Lord (Eds.), Stochastic methods in neuroscience (pp. 278–303). Oxford: Clarendon.

    Google Scholar 

  39. Paninski, L., Pillow, J., & Lewi, J. (2007). Statistical models for neural encoding, decoding, and optimal stimulus design. Progress in Brain Research, 165, 493.

    Article  PubMed  Google Scholar 

  40. Petersen, C., Grinvald, A., & Sakmann, B. (2003). Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell recordings and neuron reconstructions. Journal of Neuroscience, 23, 1298–1309.

    CAS  PubMed  Google Scholar 

  41. Pillow, J. (2007). Likelihood-based approaches to modeling the neural code. In K. Doya, S. Ishii, A. Pouget, & R. Rao, (Eds.), Bayesian brain: Probabilistic approaches to neural coding (pp. 53–70). Cambridge: MIT.

    Google Scholar 

  42. Pillow, J., & Latham, P. (2008). Neural characterization in partially observed populations of spiking neurons. Advances in Neural Information Processing Systems, 20, 1161–1168.

    Google Scholar 

  43. Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995–999.

    CAS  Article  PubMed  Google Scholar 

  44. Rasch, M., Gretton, A., Murayama, Y., Maass, W., & Logothetis, N. (2008). Inferring spike trains from local field potentials. Journal of Neurophysiology, 99, 1461–1476.

    Article  PubMed  Google Scholar 

  45. Ringach, D., Hawken, M., & Shapley, R. (2002). Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. Journal of Visualization, 2, 12–24.

    Article  Google Scholar 

  46. Rousche, P. J., & Normann, R. A. (1992). A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Annals of Biomedical Engineering, 20, 413–422.

    CAS  Article  PubMed  Google Scholar 

  47. Samonds, J. M., & Bonds, A. B. (2005). Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex. Journal of Neurophysiology, 93, 223–236.

    Article  PubMed  Google Scholar 

  48. Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18, 3870–3896.

    CAS  PubMed  Google Scholar 

  49. Shlens, J., Field, G., Gauthier, J., Greschner, M., Sher, A., Litke, A., & Chichilnisky, E. (2009). The structure of large-scale synchronized firing in primate retina. Journal of Neuroscience, 29, 5022–5031.

    CAS  Article  PubMed  Google Scholar 

  50. Shoham, S., Fellows, M., & Normann, R. (2003). Robust, automatic spike sorting using mixtures of multivariate t-distributions. Journal of Neuroscience Methods, 127, 111–122.

    Article  PubMed  Google Scholar 

  51. Siegel, M., & Koenig, P. (2003). A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats. Journal of Neuroscience, 23, 4251–4260.

    CAS  PubMed  Google Scholar 

  52. Smith, M. A., Bair, W., & Movshon, J. A. (2002). Signals in macaque V1 neurons that support the perception of Glass patterns. Journal of Neuroscience, 22, 8334–8345.

    CAS  PubMed  Google Scholar 

  53. Smith, M. A., & Kohn, A. (2008). Spatial and temporal scales of neuronal correlation in primary visual cortex. Journal of Neuroscience, 28, 12591–12603.

    CAS  Article  PubMed  Google Scholar 

  54. Tsodyks, M., Kenet, T., Grinvald, A., & Arieli, A. (1999). Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science, 286(5446), 1943–1946.

    CAS  Article  PubMed  Google Scholar 

  55. Xing, D., Yeh, C., & Shapley, R. (2009). Spatial spread of the local field potential and its laminar variation in visual cortex. Journal of Neuroscience, 29, 11540–11549.

    CAS  Article  PubMed  Google Scholar 

  56. Zohary, E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370, 140–143.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship to RCK (DGE-0549352), National Eye Institute (NEI) grants EY015958 and EY018894 to MAS, National Institute of Mental Health (NIMH) Grant MH64445 and NSF CISE IIS 0713206 to TSL, and NIMH grant MH064537 to REK. Data was collected by RCK, MAS and Adam Kohn in his laboratory as a part of a collaborative effort between the Kohn laboratory at Albert Einstein College of Medicine and the Lee laboratory at Carnegie Mellon University. We thank Adam Kohn for collaboration, and we are also grateful to Amin Zandvakili, Xiaoxuan Jia and Stephanie Wissig for assistance in data collection.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryan C. Kelly.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kelly, R.C., Smith, M.A., Kass, R.E. et al. Local field potentials indicate network state and account for neuronal response variability . J Comput Neurosci 29, 567–579 (2010). https://doi.org/10.1007/s10827-009-0208-9

Download citation

Keywords

  • Local field potential
  • Correlation
  • Network state
  • Spontaneous activity
  • Multielectrode array
  • Decoding
  • Population coding