Skip to main content

Advertisement

Log in

A diffusion-activation model of CaMKII translocation waves in dendrites

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Ca2+-calmodulin-dependent protein kinase II (CaMKII) is a key regulator of glutamatergic synapses and plays an essential role in many forms of synaptic plasticity. It has recently been observed that stimulating dendrites locally with a single glutamate/glycine puff induces a local translocation of CaMKII into spines that subsequently spreads in a wave-like manner towards the distal dendritic arbor. Here we present a mathematical model of the diffusion, activation and translocation of dendritic CaMKII. We show how the nonlinear dynamics of CaMKII diffusion-activation generates a propagating translocation wave, provided that the rate of activation is sufficiently fast. We also derive an explicit formula for the wave speed as a function of physiological parameters such as the diffusivity of CaMKII and the density of spines. Our model provides a quantitative framework for understanding the spread of CaMKII translocation and its possible role in heterosynaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baer, S. M., & Rinzel, J. (1991). Propagation of dendritic spikes mediated by excitable spines: A continuum theory. Journal of Neurophysiology, 65, 874–890.

    CAS  PubMed  Google Scholar 

  • Barria, A., Derkach, V., & Soderling, T. (1997a). Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the α-amino-3-hydroxyl-5-methyl-4-isoxazole-proprionic acid glutamate receptor. Journal of Biological Chemistry, 272, 32727–32730.

    Article  CAS  PubMed  Google Scholar 

  • Barria, A., Muller, D., Derkach, V., Griffith, L. C., & Soderling, T. R. (1997b). Regulatory phosphorylation of AMPA-type glutamate receptors by CaMKII during long-term potentiation. Science, 276, 2042–2045.

    Article  CAS  PubMed  Google Scholar 

  • Bayer, K. U., De Koninck, P., Leonard, A. S., Hell, J. W., & Schulman, H. (2001). Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature, 411, 801–805.

    Article  CAS  PubMed  Google Scholar 

  • Bayer, K. U., et al. (2006). Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. Journal of Neuroscience, 26, 1164–1174.

    Article  CAS  PubMed  Google Scholar 

  • Bi, G.-Q., & Poo, M.-M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience, 24, 139–166.

    Article  CAS  PubMed  Google Scholar 

  • Bressloff, P. C. (2009). Cable theory of protein receptor trafficking in dendritic trees. Physics Review E, 79, 041904.

    Article  CAS  Google Scholar 

  • Bressloff, P. C., & Earnshaw, B. A. (2007). Diffusion-trapping model of receptor trafficking in dendrites. Physics Review E, 75, 041915.

    Article  CAS  Google Scholar 

  • Coombes, S., & Bressloff, P. C. (2000). Solitary waves in a model of dendritic cable with active spines. SIAM Journal of Applied Mathematics, 61, 432–453.

    Article  Google Scholar 

  • Dagdug, L., Berezhkovskii, A. M., Makhnovskii, Y. A., & Zitserman, V. Y. (2007). Transient diffusion in a tube with dead ends. Journal of Chemical Physics, 127, 224712.

    Article  PubMed  CAS  Google Scholar 

  • Derkach, V., Barria, A., & Soderling, T. R. (1999). Ca2 + /calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionate type glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 96, 3269–3274.

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw, B. A., & Bressloff, P. C. (2006). Biophysical model of AMPA receptor trafficking and its regulation during long-term potentiation/long-term depression. Journal of Neuroscience, 26, 12362–12373.

    Article  CAS  PubMed  Google Scholar 

  • Earnshaw, B. A., & Bressloff, P. C. (2008). Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite. Journal of Computational Neuroscience, 25, 366–389.

    Article  CAS  PubMed  Google Scholar 

  • Engert, F., & Bonhoeffer, T. (1997). Synapse specificity of long-term potentiation breaks down at short distances. Nature, 388, 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga, K., Stoppini, L., Miyamoto, E., & Muller, D. (1993). Long-term potentiation is associated with an increased activity of Ca2 + /calmodulin-dependent protein kinase II. Journal of Biological Chemistry, 268, 7863–7867.

    CAS  PubMed  Google Scholar 

  • Fukunaga, K., Muller, D., & Miyamoto, E. (1995). Increased phosphorylation of Ca2 + /calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. Journal of Biological Chemistry, 270, 6119–6124.

    Article  CAS  PubMed  Google Scholar 

  • Gardoni, F., et al. (1998). Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. Journal of Neurochemistry, 71, 1733–1741.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, P. I., Meyer, T., Stryer, L., & Schulman, H. (1994). Dual role of calmodulin in autophosphorylation of multifunctional CaM Kinase may underlie decoding of calcium signal. Neuron, 12, 943–956.

    Article  CAS  PubMed  Google Scholar 

  • Harms, K. J., & Craig, A. M. (2005). Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons. Journal of Comparative Neurology, 490, 72–84.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, C. D., & Svoboda, K. (2007). Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature, 450, 1195–1202.

    Article  CAS  PubMed  Google Scholar 

  • Holcman, D., & Triller, A. (2006). Modeling synaptic dynamics driven by receptor lateral diffusion. Biophysical Journal, 91, 2405–2415.

    Article  CAS  PubMed  Google Scholar 

  • Hudmon, A., & Schulman, H. (2002). Neuronal Ca2+/calmodulin-dependent protein kinase II: The role of structure and autoregulation in cellular function. Annual Review of Biochemistry, 71, 473–510.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of Eugenics, 7, 353–369.

    Google Scholar 

  • Frey, U., & Morris, R. (1997). Synaptic tagging and long-term potentiation. Nature, 385, 533–536.

    Article  CAS  PubMed  Google Scholar 

  • Kolmogorff, A., Petrovsky, I., & Piscounoff, N. (1937). Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin of Mathematics, 1, 1–25 (Moscow University).

    Google Scholar 

  • Lee, H.-K., Barbarosie, M., Kameyama, K., Bear, M. F., & Huganir, R. L. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 405, 955–959.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.-J. R., Escobedo-Lozoya, Y., Szatmari, E. M., & Yasuda, R. (2009). Activation of CaMKII in single dendritic spines during long-term potentiation. Nature, 458, 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, A. S., Lim, I. A., Hemsworth, D. E., Horne, M. C., & Hell, J. W. (1999). Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences of the United States of America, 96, 3239–3244.

    Article  CAS  PubMed  Google Scholar 

  • Lisman, J., Schulman, H., & Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Reviews. Neuroscience, 3, 175–190.

    Article  CAS  PubMed  Google Scholar 

  • Lledo, P. M., et al. (1995). Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proceedings of the National Academy of Sciences of the United States of America, 92, 11175–11179.

    Article  CAS  PubMed  Google Scholar 

  • Lou, L. L., Lloyd, S. J., & Schulman, H. (1986). Activation of the multifunctional Ca2 + /calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an autonomous enzyme. Proceedings of the National Academy of Sciences of the United States of America, 83, 9497–9501.

    Article  CAS  PubMed  Google Scholar 

  • Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21.

    Article  CAS  PubMed  Google Scholar 

  • Malinow, R., Schulman, H., & Tsien, R. W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science, 245, 862–866.

    Article  CAS  PubMed  Google Scholar 

  • Mammen, A. L., Kameyama, K., Roche, K. W., & Huganir, R. L. (1997). Phosphorylation of the α-amino-3-hydroxyl-5-methyl-isoxazole-4-proprionic acid receptor GluR1 subunit by calcium/calmodulin-dependent protein kinase II. Journal of Biological Chemistry, 272, 32528–32533.

    Article  CAS  PubMed  Google Scholar 

  • Meunier, C., & d’Incamps, B. L. (2008). Extending cable theory to heterogeneous dendrites. Neural Computation, 20, 1732–1775.

    Article  PubMed  Google Scholar 

  • Miller, S. G., & Kenney, M. B. (1986). Regulation of brain type II Ca2 + /calmodulin-dependent protein kinase by autophosphorylation: A Ca2 + -triggered molecular switch. Cell, 44, 861–870.

    Article  CAS  PubMed  Google Scholar 

  • Newpher, T. M., & Ehlers, M. D. (2008). Glutamate receptor dynamics in dendritic microdomains. Neuron, 58, 472–497.

    Article  CAS  PubMed  Google Scholar 

  • Noble, J. V. (1974). Geographic and temporal development of plagues. Nature, 250, 726–729.

    Article  CAS  PubMed  Google Scholar 

  • Otmakhov, N., Griffith, L. C., & Lisman, J. E. (1997). Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. Journal of Neuroscience, 17, 5357–5365.

    CAS  PubMed  Google Scholar 

  • Pettit, D. L., Perlman, S., & Malinow, R. (1994). Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science, 266, 1881–1885.

    Article  CAS  PubMed  Google Scholar 

  • Reymann, K., & Frey, J. (2007). The late maintenance of hippocampal LTP: Requirements, phases, synaptic tagging, late associativity and implications. Neuropharmacology, 52, 24–40.

    Article  CAS  PubMed  Google Scholar 

  • Rich, R. C., & Schulman, H. (1998). Substrate-directed function of calmodulin in autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. Journal of Biological Chemistry, 273, 28424–28429.

    Article  CAS  PubMed  Google Scholar 

  • Rose, J., Jin, S.-X., & Craig, A. M. (2009). Heterosynaptic molecular dynamics: Locally induced propagating synaptic accumulation of CaM Kinase II. Neuron, 61, 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh, T., & Schwartz, J. H. (1985). Phosphorylation-dependent subcellular translocation of a Ca2 + /calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons. Journal of Cell Biology, 100, 835–842.

    Article  CAS  PubMed  Google Scholar 

  • Santamaria, F., Wils, S., De Schutter, E., & Augustine, G. J. (2006). Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron, 52, 635–648.

    Article  CAS  PubMed  Google Scholar 

  • Shen, K, & Meyer, T. (1999). Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor simulation. Science, 284, 162–166.

    Article  CAS  PubMed  Google Scholar 

  • Shen, K., Tereul, M. N., Subramanian, K., & Meyer, T. (1998). CaMKIIβ functions as an F-actin targeting module that localizes CaMKIIα/β heterooligomers to dendritic spines. Neuron, 21, 593–606.

    Article  CAS  PubMed  Google Scholar 

  • Shen, K., Teruel, M. N., Connor, J. H., Shenolikar, S., & Meyer, T. (2000). Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nature Neuroscience, 3, 881–886.

    Article  CAS  PubMed  Google Scholar 

  • Strack, S., Choi, S., Lovinger, D. M., & Colbran, R. J. (1997). Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. Journal of Biological Chemistry, 272, 13467–13470.

    Article  CAS  PubMed  Google Scholar 

  • van Saarloos, W. (2003). Front propagation into unstable states. Physics Reports, 386, 29–222.

    Article  Google Scholar 

  • Yang, E., & Schulman, H. (1999). Structural examination of autoregulation of multifunctional calcium/calmodulin-dependent protein kinase II. Journal of Biological Chemistry, 274, 26199–26208.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.-P., Holbro, N., & Oertner, T. G. (2008). Optical induction of plasticity at single synapses reveals input-specific accumulation of αCaMKII. Proceedings of the National Academy of Sciences of the United States of America, 105, 12039–12044.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (DMS 0813677 and RTG 0354259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Bressloff.

Additional information

Action Editor: Wulfram Gerstner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Earnshaw, B.A., Bressloff, P.C. A diffusion-activation model of CaMKII translocation waves in dendrites. J Comput Neurosci 28, 77–89 (2010). https://doi.org/10.1007/s10827-009-0188-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0188-9

Keywords

Navigation