Journal of Computational Neuroscience

, Volume 29, Issue 1–2, pp 35–47 | Cite as

Time series analysis of hybrid neurophysiological data and application of mutual information

  • Atanu Biswas
  • Apratim GuhaEmail author


Multivariate time series data of which some components are continuous time series and the rest are point processes are called hybrid data. Such data sets routinely arise while working with neuroscience data, EEG and spike trains would perhaps be the most obvious example. In this paper, we discuss the modeling of a hybrid time series, with the continuous component being the physiological tremors in the distal phalanx of the middle finger, and motor unit firings in the middle finger portion of the extensor digitorum communis (EDC) muscle. We employ a model for the two components based on Auto-regressive Moving Average (ARMA) type models. Another major issue to arise in the modeling of such data is to assess the goodness of fit. We suggest a visual procedure based on mutual information towards assessing the dependence pattern of hybrid data. The goodness of fit is also verified by standard model fitting diagnostic techniques for univariate data.


Hybrid data Generalized linear models ARMA models Cross-correlation Mutual information Maximum likelihood estimation 



Professor J. R. Rosenberg kindly supplied the data. The authors also wish to thank an Associate Editor and two anonymous referees for their careful reading and some constructive suggestions which led considerable improvement over an earlier version of the manuscript.


  1. Andrieu, C., Davy, M., & Doucet, A. (2003). Efficient particle filtering for jump Markov systems: application to time-varying autoregressions. IEEE Transactions on Signal Processing, 51, 1762–1770.CrossRefGoogle Scholar
  2. Antos, A., & Kontoyiannis, Y. (2001). Convergence properties of functional estimates for discrete distributions. Random Structures & Algorithms, 19, 163–193.CrossRefGoogle Scholar
  3. Atkinson, A. C., & Biswas, A. (2005). Bayesian adaptive biased-coin designs for clinical trials with normal responses. Biometrics, 61, 118–125.CrossRefPubMedGoogle Scholar
  4. Barbieri R, Quirk M. C., Frank L. M., Wilson M. A., & Brown E. N. (2001). Construction and analysis of non-Poisson stimulus response models of neural spike train activity. Journal of Neuroscience Methods, 105, 25–37.CrossRefPubMedGoogle Scholar
  5. Basharin, G. P. (1959). On a statistical estimate for the entropy of a sequence of independent random variables. Theory of Probability and its Applications, 4, 333–336.CrossRefGoogle Scholar
  6. Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Science of the United States of America, 94, 5411–5416.CrossRefGoogle Scholar
  7. Biswas, A., & Guha, A. (2007). Time series analysis of categorical data using auto-mutual information. Indian Statistical Institute Technical Report Number ASD/2007/01.Google Scholar
  8. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (revised ed.). Holden-Day, San Francisco.Google Scholar
  9. Brillinger, D. R. (2004). Some data analysis using mutual information. Brazilian Journal of Probability and Statistics, 18, 163–183.Google Scholar
  10. Brillinger, D. R., & Guha, A. (2007). Mutual information in the frequency domain. Journal of Statistical Planning and Inference, 137, 1076–1084.CrossRefGoogle Scholar
  11. Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C., & Wilson, M. A. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal lace cells. Journal of Neuroscience, 18, 7411–7425.PubMedGoogle Scholar
  12. Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (1998). The time rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14, 325–346.CrossRefGoogle Scholar
  13. Chen Y. H., Bressler S. L., Knuth K. H., Truccolo W. A., & Ding M. Z. (2006). Stochastic modeling of neurobiological time series: Power, coherence, Granger causality, and separation of evoked responses from ongoing activity . Chaos, 16(026113).Google Scholar
  14. Cover, T., & Thomas, J. (1991). Elements of information theory. Wiley, New York.CrossRefGoogle Scholar
  15. Davis, G. M., & Ensor, K. B. (2007). Multivariate time series analysis with categorical and continuous variables in an LSTR model. Journal of Time Series Analysis, 28, 867–885.CrossRefGoogle Scholar
  16. Elble, R. J. (1986). Physiologic and essential tremor. Neurology, 36, 225–231.CrossRefPubMedGoogle Scholar
  17. Gardner, G, Harvey, A. C., & Phillips, G. D. A. (1980). An algorithm for exact maximum likelihood estimation of autoregressive-moving average models by means of Kalman filtering. Applied Statistics, 29, 311–322.CrossRefGoogle Scholar
  18. Granger, C., & Lin, J. L. (1994). Using the mutual information coefficient to identify lags in nonlinear models. Journal of Time Series Analysis, 15(4), 371–384.CrossRefGoogle Scholar
  19. Guha, A. (2005). Analysis of dependence structures of hybrid stochastic processes using mutual information. Ph.D. thesis, University of California, Berkeley.Google Scholar
  20. Guha, A., & Biswas, A. (2008). An overview of modeling techniques for hybrid brain data. Statistica Sinica, 18(2008), 1311–1340.Google Scholar
  21. Halliday, D. M., Conway, B. A., Farmer, S. F., & Rosenberg, J. R. (1999). Load-independent contributions from motor-unit synchronization to human physiological tremor. Journal of Neurophysiology, 82, 664–675.PubMedGoogle Scholar
  22. Jacobs, P. A., & Lewis, P. A. W. (1978). Discrete time series generated by mixtures. I: conditional and runs properties. Journal of the Royal Statistical Society, Series B, 40, 94–105.Google Scholar
  23. Jacobs, P. A., & Lewis, P. A. W. (1983). Stationary discrete autoregressive-moving average time series generated by mixtures. Journal of Time Series Analysis, 4, 19–36.CrossRefGoogle Scholar
  24. Joe, H. (1996). Time series models with univariate margins in the convolution-closed infinitely divisible class. Journal of Applied Probability, 33, 664–677.CrossRefGoogle Scholar
  25. Johnson, D. H., & Swami, A. (1983). The transmission of signals by auditory-nerve fiber discharge patterns. Journal of the Acoustical Society of America, 74, 493–501.CrossRefPubMedGoogle Scholar
  26. Jørgensen, B., Lundbye-Christensen, S., Song, P. X., & Sun, L. (1996). State-space model for multivariate longitudinal data of mixed types. The Canadian Journal of Statistics, 24, 385–402.CrossRefGoogle Scholar
  27. Jørgensen, B., & Song, P. X.-K. (1998). Stationary time-series models with exponential dispersion model margins. Journal of Applied Probability, 35, 78–92.CrossRefGoogle Scholar
  28. Jung, R. C., & Tremayne, A. R. (2006). Coherent forecasting in integer time series models. International Journal of Forecasting, 22, 223–238.CrossRefGoogle Scholar
  29. Kanter, M. (1975). Autoregression for discrete processes mod 2. Journal of Applied Probability, 12, 371–375.CrossRefGoogle Scholar
  30. Kass, R. E., Ventura, V., & Brown, E. N. (2005). Statistical issues in the analysis of neuronal data. Journal of Neurophysiology, 94, 8–25.CrossRefPubMedGoogle Scholar
  31. Kedem, B., & Fokianos, K. (2002). Regression models for time series analysis. Wiley, New York.CrossRefGoogle Scholar
  32. Kiang, N. Y. S., Watanabe, T., Thomas, E. C. & Clark, L. F. (1965). Discharge patterns of single fibers in the cat’s auditory nerve. MIT, Cambridge.Google Scholar
  33. Li, W. (1990). Mutual information function versus correlation functions. Journal of Statistical Physics, 60, 823–837.CrossRefGoogle Scholar
  34. Li, W. (1994). Time series models based on generalized linear models: some further results. Biometrics, 50, 506–511.CrossRefPubMedGoogle Scholar
  35. Mars, N. J. I., & van Arragon, G. W. (1982). Time delay estimation in non-linear systems using average amount of mutual information analysis. Signal Processing, 4, 139–153.CrossRefGoogle Scholar
  36. Moon, Y. I., Rajagopalan, B., & Lall, U. (1995). Estimation of mutual information using kernel density estimators. Physical Review E, 52, 2318–2321.CrossRefGoogle Scholar
  37. Moddemeijer, R. (1989a). Delay estimation with application to electroencephalograms in epilepsy. Ph.D. thesis, Universiteit Twente, Enschede.Google Scholar
  38. Moddemeijer, R. (1989b). On estimation of entropy and mutual information of continuous distributions. Signal Processing, 16, 233–248.CrossRefGoogle Scholar
  39. Pegram, G. G. S. (1980). An autoregressive model for multilag Markov chains. Journal of Applied Probability, 17, 350–362.CrossRefGoogle Scholar
  40. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656.CrossRefGoogle Scholar
  41. Steutel, F. W. & van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Annals of probability, 7, 893–899.CrossRefGoogle Scholar
  42. Stiles, R. N., (1980). Mechanical and neural feedback factors in postural hand tremor of normal subjects. Journal of Neurophysiology, 44, 40–59.PubMedGoogle Scholar
  43. Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. R., & Bialek, W. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80, 197–200.CrossRefGoogle Scholar
  44. Ventura, V., Carta, R., Kass, R. E., Olson, C. R., & Gettner, S. N. (2001). Statistical analysis of temporal evolution in single-neuron firing rates. Biostatistics, 1, 1–20.Google Scholar
  45. Waagepetersen, R. (2006). A simulation-based goodness-of-fit test for random effects in generalized linear mixed models. Scandinavian Journal of Statistics, 33, 721–731.CrossRefGoogle Scholar
  46. Willie, J. (1979). Analyzing relationships between a time series and a point process. Ph.D. dissertation, Department of Statistics, University of California, Berkeley.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Applied Statistics UnitIndian Statistical InstituteKolkataIndia
  2. 2.School of MathematicsUniversity of BirminghamBirminghamUK

Personalised recommendations