Avendaño, C., Rausell, E., Perez-Aguilar, D., & Isorna, S. (1988). Organization of the association cortical afferent connections of area 5: A retrograde tracer study in the cat. Journal of Comparative Neurology, 278, 1–33.
Article
PubMed
Google Scholar
Avendaño, C., Rausell, E., & Reinoso-Suarez, F. (1985). Thalamic projections to areas 5a and 5b of the parietal cortex in the cat: A retrograde horseradish peroxidase study. Journal of Neuroscience, 5, 1446–1470.
PubMed
Google Scholar
Baranyi, A., Szente, M. B., & Woody, C. D. (1993a). Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. I. Patterns of firing activity and synaptic responses. Journal of Neurophysiology, 69, 1850–1864.
CAS
PubMed
Google Scholar
Baranyi, A., Szente, M. B., & Woody, C. D. (1993b). Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. Journal of Neurophysiology, 69, 1865–1879.
CAS
PubMed
Google Scholar
Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2004). A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience, 24, 8441–8453.
Article
CAS
PubMed
Google Scholar
Borg-Graham, L. J., Monier, C., & Frégnac, Y. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature, 393, 369–373.
Article
CAS
PubMed
Google Scholar
Bourassa, J., & Deschênes, M. (1995). Corticothalamic projections from the primary visual cortex in rats: A single fiber study using biocytin as an anterograde tracer. Neuroscience, 66, 253–263.
Article
CAS
PubMed
Google Scholar
Braitenberg, V., & Schüz, A. (1998). Cortex: Statistics and geometry of neuronal connectivity (2nd ed.). Berlin: Springer.
Google Scholar
Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642.
Article
PubMed
Google Scholar
Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.
Article
CAS
PubMed
Google Scholar
Cessac, B. (2008). A discrete time neural network model with spiking neurons. Rigorous results on the spontaneous dynamics. Journal of Mathematical Biology, 56, 311–345.
Article
CAS
PubMed
Google Scholar
Cessac, B., & Viéville, T. (2009). On dynamics of integrate-and-fire neural networks with conductance based synapses. Frontiers of Computer Neuroscience, 3, 1.
Google Scholar
Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89, 2707–2725.
Article
PubMed
Google Scholar
Connors, B. W., & Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences, 13, 99–104.
Article
CAS
PubMed
Google Scholar
Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: A study of dynamic corticothalamic relationships. Journal of Neuroscience, 15, 604–622.
CAS
PubMed
Google Scholar
Contreras, D., Timofeev, I., & Steriade, M. (1996). Mechanisms of long lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. Journal of Physiology, 494, 251–264.
CAS
PubMed
Google Scholar
Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature, 423, 283–238.
Article
CAS
PubMed
Google Scholar
Crutchfield, J. P., & Kaneko, K. (1988). Are attractors relevant to turbulence? Physical Review Letters, 60, 2715–2718.
Article
PubMed
Google Scholar
de la Peña, E., & Geijo-Barrientos, E. (1996). Laminar organization, morphology and physiological properties of pyramidal neurons that have the low-threshold calcium current in the guinea-pig frontal cortex. Journal of Neuroscience, 16, 5301–5311.
PubMed
Google Scholar
Destexhe, A. (2007). High-conductance state. Scholarpedia, 2(11), 1341. http://www.scholarpedia.org/article/High-Conductance_State
Google Scholar
Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79, 999–1016.
CAS
PubMed
Google Scholar
Destexhe, A., Contreras, D., & Steriade, M. (2001). LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing, 38, 555–563.
Article
Google Scholar
Destexhe, A., & Paré, D. (1999). Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.
CAS
PubMed
Google Scholar
Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews Neuroscience, 4, 739–751.
Article
CAS
PubMed
Google Scholar
Destexhe, A., & Sejnowski, T. J. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological Reviews, 83, 1401–1453.
CAS
PubMed
Google Scholar
El Boustani, S., & Destexhe, A. (2009). A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Computation, 21, 46–100.
Article
PubMed
Google Scholar
El Boustani, S., Pospischil, M., Rudolph-Lilith, M., & Destexhe, A. (2007). Activated cortical states: Experiments, analyses and models. Journal of Physiology (Paris), 101, 99–109.
Article
Google Scholar
FitzGibbon, T., Tevah, L. V., & Jervie-Sefton, A. (1995). Connections between the reticular nucleus of the thalamus and pulvinar-lateralis posterior complex: A WGA-HRP study. Journal of Comparative Neurology, 363, 489–504.
Article
CAS
PubMed
Google Scholar
Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. Journal of Neuroscience, 23, 11628–11640.
CAS
PubMed
Google Scholar
Freund, T. F., Martin, K. A., Soltesz, I., Somogyi, P., & Whitteridge, D. (1989). Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey. Journal of Comparative Neurology, 289, 315–336.
Article
CAS
PubMed
Google Scholar
Grenier, F., Timofeev, I., & Steriade, M. (1998). Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proceedings of the National Academy of Sciences of the United States of America, 95, 13929–13934.
Article
CAS
PubMed
Google Scholar
Hines, M. L. & Carnevale, N. T. (1997). The Neuron simulation environment. Neural Computation, 9, 1179–1209.
Article
CAS
PubMed
Google Scholar
Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15, 1063–1070.
Article
PubMed
Google Scholar
Jones, E. G. (1985). The thalamus. New York: Plenum.
Google Scholar
Kim, U., Sanches-Vives, M. V., & McCormick, D. A. (1997). Functional dynamics of GABAergic inhibition in the thalamus. Science, 278, 130–134.
Article
CAS
PubMed
Google Scholar
Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008). The high-conductance state of cortical networks. Neural Computation, 20, 1–43.
Article
PubMed
Google Scholar
Landry, P., & Deschênes, M. (1981). Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. Journal of Comparative Neurology, 199, 345–371.
Article
CAS
PubMed
Google Scholar
Lee, A. K., Manns, I. D., Sakmann, B., & Brecht, M. (2006). Whole-cell recordings in freely moving rats. Neuron, 51, 399–407.
Article
CAS
PubMed
Google Scholar
Llinás, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: A new insight into CNS function. Science, 242, 1654–1664.
Article
PubMed
Google Scholar
Matsumura, M., Cope, T., & Fetz, E. E. (1988). Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Experimental Brain Research, 70, 463–469.
Article
CAS
Google Scholar
McCormick, D. A. (1992). Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progress in Neurobiology, 39, 337–388.
Article
CAS
PubMed
Google Scholar
Minderhoud, J. M. (1971). An anatomical study of the efferent connections of the thalamic reticular nucleus. Experimental Brain Research, 112, 435–446.
CAS
Google Scholar
Paré, D., Shink, E., Gaudreau, H., Destexhe, A., & Lang, E. J. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical neurons in vivo. Journal of Neurophysiology, 79, 1450–1460.
PubMed
Google Scholar
Parga, N., & Abbott, L. F. (2007). Network model of spontaneous activity exhibiting synchronous transitions between up and down states. Frontiers in Neuroscience, 1, 57–66.
Article
PubMed
Google Scholar
Plenz, D., & Aertsen, A. (1996). Neural dynamics in cortex-striatum co-cultures II—spatiotemporal characteristics of neuronal activity. Neuroscience, 70, 893–924.
Article
CAS
PubMed
Google Scholar
Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99, 427–441.
Article
PubMed
Google Scholar
Rausell, E., & Jones, E. G. (1995). Extent of intracortical arborization of thalamocortical axons as a determinant of representational plasticity in monkey somatic sensory cortex. Journal of Neuroscience, 15, 4270–4288.
CAS
PubMed
Google Scholar
Robertson, R. T., & Cunningham, T. J. (1981). Organization of corticothalamic projections from parietal cortex in cat. Journal of Comparative Neurology, 199, 569–585.
Article
CAS
PubMed
Google Scholar
Rudolph, M., Pelletier, J.-G., Paré, D., & Destexhe, A. (2005). Characterization of synaptic conductances and integrative properties during electrically-induced EEG-activated states in neocortical neurons in vivo. Journal of Neurophysiology, 94, 2805–2821.
Article
PubMed
Google Scholar
Rudolph, M., Pospischil, M., Timofeev, I., & Destexhe, A. (2007). Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. Journal of Neuroscience, 27, 5280–5290.
Article
CAS
PubMed
Google Scholar
Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 10, 1027–1034.
Google Scholar
Sherman, S. M., & Guillery, R. W. (2001). Exploring the thalamus. New York: Academic.
Google Scholar
Smith, G. D., Cox, C. L., Sherman, M. & Rinzel, J. (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. Journal of Neurophysiology, 83, 588–610.
CAS
PubMed
Google Scholar
Steriade, M. (2003). Neuronal substrates of sleep and epilepsy. Cambridge: Cambridge University Press.
Google Scholar
Steriade, M., Amzica, F., & Nunez, A. (1993a). Cholinergic and noradrenergic modulation of the slow (~0.3 Hz) oscillation in neocortical cells. Journal of Neurophysiology, 70, 1384–1400.
Google Scholar
Steriade, M., Deschênes, M., Domich, L., & Mulle, C. (1985). Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. Journal of Neurophysiology, 54, 1473–1497.
CAS
PubMed
Google Scholar
Steriade, M., Nunez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience, 13, 3266–3283.
CAS
PubMed
Google Scholar
Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: A view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.
CAS
PubMed
Google Scholar
Tél, T., & Lai, Y.-C. (2008). Chaotic transients in spatially extended systems. Physics Reports, 460, 245–275.
Article
Google Scholar
Thomson, A. M., & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cerebral Cortex, 13, 5–14.
Article
PubMed
Google Scholar
Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., & Steriade, M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10, 1185–1199.
Article
CAS
PubMed
Google Scholar
Updyke, B. V. (1981). Projections from visual areas of the middle suprasylvian sulcus onto the lateral posterior complex and adjacent thalamic nuclei in cat. Journal of Comparative Neurology, 201, 477–506.
Article
CAS
PubMed
Google Scholar
Vogels, T. P., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25, 10786–10795.
Article
CAS
PubMed
Google Scholar
von Krosigk, M., Bal, T., & McCormick, D. A. (1993). Cellular mechanisms of a synchronized oscillation in the thalamus. Science, 261, 361–364.
Article
Google Scholar
White, E. L. (1986). Termination of thalamic afferents in the cerebral cortex. In E. G. Jones & A. Peters (Eds.), Cerebral cortex (Vol. 5, pp. 271–289). New York: Plenum.
Google Scholar
White, E. L., & Hersch, S. M. (1982). A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic cells in mouse SmI cortex. Journal of Neurocytology, 11, 137–157.
Article
CAS
PubMed
Google Scholar
Xiang, Z., Huguenard, J. R., & Prince, D. A. (1998). Cholinergic switching within neocortical inhibitory networks. Science, 281, 985–988.
Article
CAS
PubMed
Google Scholar
Zillmer, R., Livi, R., Politi, A., & Torcini, A. (2006). Desynchronization in diluted neural networks. Physical Review E, 74, 036203.
Article
Google Scholar