Skip to main content
Log in

Comparison of local measures of spike time irregularity and relating variability to firing rate in motor cortical neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Spike time irregularity can be measured by the coefficient of variation. However, it overestimates the irregularity in the case of pronounced firing rate changes. Several alternative measures that are local in time and therefore relatively rate-independent were proposed. Here we compared four such measures: CV2, LV, IR and SI. First, we asked which measure is the most efficient for time-resolved analyses of experimental data. Analytical results show that CV2 has the less variable estimates. Second, we derived useful properties of CV2 for gamma processes. Third, we applied CV2 on recordings from the motor cortex of a monkey performing a delayed motor task to characterize the irregularity, that can be modulated or not, and decoupled or not from firing rate. Neurons with a CV2-rate decoupling have a rather constant CV2 and discharge mainly irregularly. Neurons with a CV2-rate coupling can modulate their CV2 and explore a larger range of CV2 values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amit, D. J., & Brunel, N. (1997). Dynamics of a recurrent network of spiking neurons before and following learning. Network. Computation in Neural Systems, 8, 373–404. doi:10.1088/0954-898X/8/4/003.

    Article  Google Scholar 

  • Baker, S., & Lemon, R. (2000). Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. Journal of Neurophysiology, 84, 1770–1780.

    CAS  PubMed  Google Scholar 

  • Chelvanayagam, D. K., & Vidyasagar, T. R. (2006). Irregularity in neocortical spike trains: Influence of measurement factors and another method of estimation. Journal of Neuroscience Methods, 157, 264–273. doi:10.1016/j.jneumeth.2006.05.006.

    Article  PubMed  Google Scholar 

  • Christodoulou, C., & Bugmann, G. (2001). Coefficient of variation vs. mean interspike interval curves: What do they tell us about the brain? Neurocomputing, 38(40), 1141–1149. doi:10.1016/S0925-2312(01)00480-5.

    Article  Google Scholar 

  • Compte, A., Constantinidis, C., Tegnér, J., Raghavachari, S., Chafee, M. V., Goldman-Rakic, P. S., et al. (2003). Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. Journal of Neurophysiology, 90, 3441–3454. doi:10.1152/jn.00949.2002.

    Article  PubMed  Google Scholar 

  • Davies, R. M., Gerstein, G. L., & Baker, N. (2006). Measurement of time-dependent changes in the irregularity of neural spiking. Journal of Neurophysiology, 96, 906–918. doi:10.1152/jn.01030.2005.

    Article  PubMed  Google Scholar 

  • Gerstein, G. L., & Kiang, N. Y. S. (1960). An approach to the quantitative analysis of electrophysiological data from single neurons. Biophysical Journal, 1, 15–28. doi:10.1016/S0006-3495(60)86872-5.

    Article  CAS  PubMed  Google Scholar 

  • Gutkin, B. S., & Ermentrout, G. B. (1998). Dynamics of membrane excitability determine inter-spike interval variability: a link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10, 1047–1065. doi:10.1162/089976698300017331.

    Article  CAS  PubMed  Google Scholar 

  • Holt, G. R., Softky, W. R., Koch, C., & Douglas, R. J. (1996). Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. Journal of Neurophysiology, 75, 1806–1814.

    CAS  PubMed  Google Scholar 

  • Kass, R. E., & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13, 1713–1720. doi:10.1162/08997660152469314.

    Article  CAS  PubMed  Google Scholar 

  • Kilavik, B. E., Ponce-Alvarez, A., & Riehle, A. (2007). Beta oscillations in monkey motor cortical LFPs are stronger during temporal attention than motor preparation. Society for Neuroscience Abstract, 664.2.

  • Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503–1506. doi:10.1126/science.7770778.

    Article  CAS  PubMed  Google Scholar 

  • Miura, K., Okada, M., & Amari, M. (2006). Estimating spiking irregularities under changing environments. Neural Computation, 18, 2359–2386. doi:10.1162/neco.2006.18.10.2359.

    Article  PubMed  Google Scholar 

  • Miura, K., Tsubo, Y., Okada, M., & Fukai, T. (2007). Balance excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations. Journal of Neuroscience, 27, 13802–13812. doi:10.1523/JNEUROSCI.2452-07.2007.

    Article  CAS  PubMed  Google Scholar 

  • Nawrot, M., Boucsein, C., Rodriguez Molina, V., Aertsen, A., Grün, S., & Rotter, S. (2007). Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro. Neurocomputing, 70, 1717–1722. doi:10.1016/j.neucom.2006.10.101.

    Article  Google Scholar 

  • Nawrot, M., Boucsein, C., Rodriguez Molina, V., Riehle, A., Aertsen, A., & Rotter, S. (2008). Measurement of variability dynamics in cortical spike trains. Journal of Neuroscience Methods, 169, 374–390. doi:10.1016/j.jneumeth.2007.10.013.

    Article  PubMed  Google Scholar 

  • Sakai, Y., Funahashi, S., & Shinomoto, S. (1999). Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons. Neural Networks, 12, 1181–1190. doi:10.1016/S0893-6080(99)00053-2.

    Article  PubMed  Google Scholar 

  • Salinas, E., & Sejnowski, T. J. (2000). Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. Journal of Neuroscience, 20, 6193–6209.

    CAS  PubMed  Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4, 569–579. doi:10.1016/0959-4388(94)90059-0.

    Article  CAS  PubMed  Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. Journal of Neuroscience, 18, 3870–3896.

    CAS  PubMed  Google Scholar 

  • Shinomoto, S., Miura, K., & Koyama, S. (2005a). A measure of local variation of inter-spike intervals. Bio Systems, 79, 67–72. doi:10.1016/j.biosystems.2004.09.023.

    PubMed  Google Scholar 

  • Shinomoto, S., Miyazaki, Y., Tamura, H., & Fujita, I. (2005b). Regional and laminar differences in in vivo firing patterns of primate cortical neurons. Journal of Neurophysiology, 94, 567–575. doi:10.1152/jn.00896.2004.

    Article  PubMed  Google Scholar 

  • Shinomoto, S., Shima, K., & Tanji, K. (2003). Differences in spiking patterns among cortical neurons. Neural Computation, 15, 2823–2842. doi:10.1162/089976603322518759.

    Article  PubMed  Google Scholar 

  • Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13, 334–350.

    CAS  PubMed  Google Scholar 

  • Stevens, C. F., & Zador, A. M. (1998). Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience, 1, 210–217. doi:10.1038/659.

    Article  CAS  PubMed  Google Scholar 

  • van Vreeswijk, C. A., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724–1726. doi:10.1126/science.274.5293.1724.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nicolas Brunel, Kosuke Hamaguchi, Martin Nawrot, Laurent Perrinet, Ranulfo Romo, Stefan Rotter, and Nicole Voges for helpful comments to various versions of the manuscript. This work was supported by a grant from the Mexican Government (CONACYT) to Ponce-Alvarez, the French National Research Agency (ANR-NEUR-05-045-01), and STIC-Santé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián Ponce-Alvarez.

Additional information

Action Editor: Rob Kass

Appendices

Appendix A: Probability Density of m

In the following we provide a general way to calculate the probability density function (PDF) of m for any of the four local measures for a gamma-process with rate r and shape parameter α.

Let m(τ,τ′) be the individual value of the measure which is a function of the two consecutive ISIs τ and τ′. The cumulative distribution of m describes the probability of finding m larger than a given value m 0:

$$ C\left( {m_0 } \right) = P\left[ {m > m_0 } \right] $$

To calculate this function, we define an auxiliary variable Φ(m) for getting:

$$ m > m_0 \Rightarrow \tau \prime\kern1.5pt<\kern1.5pt\tau .\Phi \left( {m_0 } \right) $$

Hence, the cumulative function can be expressed as the probability of finding an ISI less than τΦ(m 0) integrated over all possible values of τ:

$$ P\left[ {m > m_0 } \right] = \int\limits_0^{\infty } {P\left[ {\tau \prime\kern1.5pt<\kern1.5pt\tau \Phi \left( {m_0 } \right)} \right]\rho_{\alpha } \left( \tau \right)d\tau } $$

where ρ α (τ) is the gamma distribution (Eq. (9)). Note that for a gamma-process, the probability of finding an ISI less than T is:

$$ \int\limits_0^T {\rho_{\alpha } \left( \tau \right)d\tau = \frac{1}{{\Gamma \left( \alpha \right)}}\int\limits_0^{{r\alpha T}} {u^{{\alpha - 1}} e^{- u} du} } $$

Thus,

$$ P\left[ {m > m_0 } \right] = \int\limits_0^{\infty } {\left\{ {\frac{1}{{\Gamma \left( \alpha \right)}}\int\limits_0^{{r\alpha \tau \Phi \left( {m_0 } \right)}} {u^{{\alpha - 1}} e^{- u} du} } \right\}\frac{{\left( {\alpha r} \right)^{\alpha } }}{{\Gamma \left( \alpha \right)}}\tau^{{\alpha - 1}} e^{{ - r\alpha \tau }} d\tau } $$

Finally, the PDF is the derivative of the cumulative, and thus:

$$ f_{\alpha } (m) = \frac{dP}{{dm_0 }} = \frac{{\Gamma \left( {2\alpha } \right)}}{{\Gamma \left( \alpha \right)^2 }}\frac{{\Phi \prime \left( {m_0 } \right)\Phi \left( {m_0 } \right)^{{\alpha - 1}} }}{{\left[ {1 + \Phi \left( {m_0 } \right)} \right]^{{2\alpha }} }} $$
(14)

The PDF f α (m) gives the probability of finding m in the interval [m, m + dm] and depends only on the shape parameter α.

Remark: for Φ = Identity we obtain the PDF for the ratio of two consecutive ISIs, that is:

$$ f_{\alpha } \left( {x = \frac{{\tau \prime }}{\tau }} \right) = \frac{{\Gamma \left( {2\alpha } \right)}}{{\Gamma \left( \alpha \right)^2 }}\frac{{x^{{\alpha - 1}} }}{{\left[ {1 + x} \right]^{{2\alpha }} }} $$

This function peaks at (α-1)/(α + 1) for α > 1.

Appendix B: Probability Density and expected value of CV2

Now we explicitly express the PDF of \( m^{{CV_2 }} \) and its expected value. For this we define the auxiliary variable:

$$ X = 2\frac{{\tau - \tau \prime }}{{\tau + \tau \prime }} \Rightarrow m = \left| X \right| $$

X is bounded between −2 and 2 and m is bound between 0 and 2. The cumulative function of X is:

$$ P\left[ {X > X_0 } \right] = \int\limits_0^{\infty } P \left[ {\tau \prime\kern1.5pt<\kern1.5pt\tau \frac{{2 - X_0 }}{{2 + X_0 }}} \right]\rho_{\alpha } \left( \tau \right)d\tau $$

Using Eq. (14) with Φ(X) = (2-X)/(2 + X) we find:

$$ f_{\alpha } (X) = - \frac{1}{{4^{{2\alpha - 1}} }}\frac{{\Gamma \left( {2\alpha } \right)}}{{\Gamma \left( \alpha \right)^2 }}\left( {4 - X^2 } \right)^{{\alpha - 1}} $$

This function is symmetric and, thus, the PDF of m is:

$$ f_{\alpha } (m) = 2\left| {f_{\alpha } (X)} \right| = \frac{2}{{4^{{2\alpha - 1}} }}\frac{{\Gamma \left( {2\alpha } \right)}}{{\Gamma \left( \alpha \right)^2 }}\left( {4 - m^2 } \right)^{{\alpha - 1}} $$
(15)

Note that for a Poisson process (α = 1) the probability density of m is flat and equal to 1/2. The expected value of CV2 can be expressed by means of the PDF:

$$ CV_2 \left( \alpha \right) = \int\limits_0^2 {mf_{\alpha } (m)dm = \frac{{4^{{ - \alpha + 1}} }}{\alpha }} \frac{{\Gamma \left( {2\alpha } \right)}}{{\Gamma \left( \alpha \right)^2 }} $$
(16)

The same procedure can be applied to calculate the PDF of LV, IR, and SI using Eq. (14) and noting that the PDF of an auxiliary variable X, g α (X), and the PDF of m, f α (m), are related by:

$$ f_{\alpha } (m) = \frac{dP}{dm} = g_{\alpha } (X)\left| {\frac{{\partial X}}{{\partial m}}} \right| $$

We propose the following auxiliary variables and expressions of the PDF of LV, IR, and SI:

$$ \begin{array}{*{20}c} {{\text{LV:}}\;\,X = 3\frac{{\tau - \tau \prime }}{{\tau + \tau \prime }} \Rightarrow m=\left| X \right|^2; } & {{\text{PDF:}}\,\;f_{\alpha } (m)=\frac{{\Gamma \left( {2\alpha } \right)}}{{\Gamma \left( \alpha \right)^2 }}\left( {\frac{1}{{2\sqrt 3 }}} \right)^{{2\alpha - 1}} \frac{{\left( {3 - m} \right)^{{\alpha - 1}} }}{{\sqrt m }}} \end{array} $$
$$ \begin{array}{*{20}c} {{\text{IR:}}\,\;X = \frac{\tau }{{\tau \prime }} \Rightarrow m\left| {\log (X)} \right|;} & {{\text{PDF:}}\,\;f_{\alpha } (m) = \frac{{\Gamma \left( {2\alpha } \right)}}{{\Gamma \left( \alpha \right)^2 }}\frac{{2e^{{\alpha m}} }}{{\left( {1 + e^m } \right)^{{2\alpha }} }}} \end{array} $$
$$ \begin{array}{*{20}c} {{\text{SI:}}\,\;X = \frac{{\left( {\tau + \tau \prime } \right)^2 }}{{4\tau \tau \prime }} \Rightarrow m=\frac{1}{2}\log (X);} & {{\text{PDF:}}\,\;f_{\alpha } (m) = 4\frac{{\Gamma \left( {2\alpha } \right)}}{{\Gamma \left( \alpha \right)^2 }}\frac{{Q\prime \left( {e^{2m} } \right)Q\left( {e^{2m} } \right)^{{\alpha - 1}} }}{{\left( {1 + Q\left( {e^{2m} } \right)} \right)^{{2\alpha }} }}e^{2m} } \end{array} $$

where: \( Q(x) = - 1 + 2x + 2\sqrt {x^2 - x} \).

Appendix C: Effect of an absolute refractory period

We now explore how the incorporation of an absolute refractory period influences the properties of CV2. We extend the Poisson model to account for refractoriness by setting the instantaneous firing rate to zero for a time ε immediately after a spike is fired. After this dead-time the firing rate returns immediately to the value in absence of refractoriness. In this model the interval distribution is:

$$ \rho \left( \tau \right) = \left\{ {\begin{array}{*{20}c} 0 \hfill & {{\text{if}}\,\;\tau\kern1.5pt<\kern1.5pt\varepsilon } \hfill \\ {re^{{ - r\left( {\tau - \varepsilon } \right)}} } \hfill & {\text{otherwise}} \hfill \\ \end{array} } \right. $$

To calculate the probability density of m we use the same strategy as before. First we calculate the cumulative function of X (with |X| = m):

$$ P\left[ {X > X_0 } \right] = \int {_{{\tau \frac{{2 - X_0 }}{{2 + X_0 }} > \varepsilon }} P\left[ {\tau \prime\kern1.5pt<\kern1.5pt\tau \frac{{2 - X_0 }}{{2 + X_0 }}} \right]\rho_{\alpha } \left( \tau \right)d\tau } $$

Two cases must be separated to satisfy the condition τ > ε: if X 0 > 0 the integration has to be done from ε(2-X 0)/(2 + X 0) to ∞, whereas if X 0 < 0 the integration has to be done from ε to ∞. Taking the derivative of this cumulative function gives the probability density of X:

$$ f\left( {X_0 } \right) = \frac{dP}{dX} = \left\{ {\begin{array}{*{20}c} {\left[ {\frac{1}{4} + \frac{{r\varepsilon }}{{2 - X_0 }}} \right]\exp \left( { - r\varepsilon \frac{{2X_0 }}{{2 - X_0 }}} \right)} \hfill & {{\text{if}}\,\;0 \le X_0\kern1.5pt<\kern1.5pt2} \hfill \\ { - \left[ {\frac{1}{4} + \frac{{r\varepsilon }}{{2 + X_0 }}} \right]\exp \left( {r\varepsilon \frac{{2X_0 }}{{2 + X_0 }}} \right)} \hfill & {{\text{if}}\,\; - 2\kern1.5pt<\kern1.5ptX_0\kern1.5pt<\kern1.5pt0} \hfill \\ \end{array} } \right. $$

Hence, the probability density of m is:

$$ f(m) = 2\left[ {\frac{1}{4} + \frac{{r\varepsilon }}{2 - m}} \right]\exp \left( { - r\varepsilon \frac{2m}{2 - m}} \right) $$
(17)

Note that the probability density of m in the case of refractoriness is not flat as originally proposed by Holt et al. (1996) and it now depends on , i.e. the fraction of time spend in refractory period.

In the same way, we can calculate the probability density function of m for a gamma process with an absolute refractory period ε, that is given by:

$$ f_{\alpha } (m) = \frac{{8e^{{ - r\varepsilon \alpha \frac{2m}{2 - m}}} }}{{\Gamma \left( \alpha \right)^2 \left( {2 - m} \right)^{{\alpha + 1}} }}\int\limits_0^{\infty } {\left( {u - r\varepsilon \alpha } \right)\left[ {u^2 \left( {2 + m} \right) + u\left( {2mr\varepsilon \alpha } \right)} \right]^{{\alpha - 1}} e^{{ - u\frac{4}{2 - m}}} du} $$
(18)

Finally, the expected value of CV2 for a gamma process with absolute refractory period ε is:

$$ CV_2 = \int\limits_0^2 {mf_{\alpha } (m)dm} $$
(19)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponce-Alvarez, A., Kilavik, B.E. & Riehle, A. Comparison of local measures of spike time irregularity and relating variability to firing rate in motor cortical neurons. J Comput Neurosci 29, 351–365 (2010). https://doi.org/10.1007/s10827-009-0158-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0158-2

Keywords

Navigation