Journal of Computational Neuroscience

, Volume 27, Issue 1, pp 65–80 | Cite as

Dynamics of recurrent neural networks with delayed unreliable synapses: metastable clustering

Article

Abstract

The influence of unreliable synapses on the dynamic properties of a neural network is investigated for a homogeneous integrate-and-fire network with delayed inhibitory synapses. Numerical and analytical calculations show that the network relaxes to a state with dynamic clusters of identical size which permanently exchange neurons. We present analytical results for the number of clusters and their distribution of firing times which are determined by the synaptic properties. The number of possible configurations increases exponentially with network size. In addition to states with a maximal number of clusters, metastable ones with a smaller number of clusters survive for an exponentially large time scale. An externally excited cluster survives for some time, too, thus clusters may encode information.

Keywords

Neural networks Cluster Synchronization Integrate-and-fire neurons Pulse-coupled oscillators Unreliable synapses 

References

  1. Abbott, L. F., & van Vreeswijk, C. (1993). Asynchronous states in networks of pulse-coupled oscillators. Physical Review E, 48(2), 1483–1490.CrossRefGoogle Scholar
  2. Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. New York: Cambridge University Press.Google Scholar
  3. Abramowitz, M., & Stegun, I. A. (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables. New York: Dover.Google Scholar
  4. Allen, C., & Stevens, C. F. (1994). An Evaluation of Causes for Unreliability of Synaptic Transmission. Proceedings of the National Academy of Sciences of the United States of America, 91(22), 10380–10383.PubMedCrossRefGoogle Scholar
  5. Amit, D. J., & Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex, 7, 237–252.PubMedCrossRefGoogle Scholar
  6. Barnsley, M. F. (1989). Fractals everywhere. Boston: Academic.Google Scholar
  7. Bressloff, P. C. (1999). Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses. Physical Review E, 60(2), 2160–2170.CrossRefGoogle Scholar
  8. Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.PubMedCrossRefGoogle Scholar
  9. Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11(7), 1621–1671.PubMedCrossRefGoogle Scholar
  10. Buzsaki, G. (2006). Rhythms of the brain. New York: Oxford University Press.CrossRefGoogle Scholar
  11. Diesmann, M., Gewaltig, M., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529–533.PubMedCrossRefGoogle Scholar
  12. Ernst, U., Pawelzik, K., & Geisel, T. (1995). Synchronization induced by temporal delays in pulse-coupled oscillators. Physical Review Letters, 74(9), 1570–1573.PubMedCrossRefGoogle Scholar
  13. Ernst, U., Pawelzik, K., & Geisel, T. (1998). Delay-induced multistable synchronization of biological oscillators. Physical Review E, 57(2), 2150–2162.CrossRefGoogle Scholar
  14. Gerstner, W. (1995). Time structure of the activity in neural network models. Physical Review E, 51(1), 738–758.CrossRefGoogle Scholar
  15. Gerstner, W. (1996). Rapid phase locking in systems of pulse-coupled oscillators with delays. Physical Review Letters, 76(10), 1755–1758.PubMedCrossRefGoogle Scholar
  16. Gerstner, W., & Kistler, W. K. (2002). Spiking neuron models. Cambridge: Cambridge University Press.Google Scholar
  17. Golomb, D., Wang, X. J., & Rinzel, J. (1994). Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. Journal of Neurophysiology, 72(3), 1109–1126.PubMedGoogle Scholar
  18. Gong, P. L., & van Leeuwen, H. (2007). Dynamically maintained spike timing sequences in networks of pulse-coupled oscillators with delay. Physical Review Letters, 98(4), 048104.PubMedCrossRefGoogle Scholar
  19. Jahnke, S., Memmesheimer, R. M., & Timme, M. (2008). Stable irregular dynamics in complex neural networks. Physical Review Letters, 100(4), 048102.PubMedCrossRefGoogle Scholar
  20. Kestler, J., & Kinzel, W. (2006). Multifractal distribution of spike intervals for two oscillators coupled by unreliable pulses. Journal of Physics A: Mathematical and General, 39, L461–L466.CrossRefGoogle Scholar
  21. Kinzel, W. (2008). On the stationary state of a network of inhibitory spiking neurons. Journal of Computational Neuroscience, 24, 105–112.PubMedCrossRefGoogle Scholar
  22. Kumar, A., Rotter, S., & Aertsen, A. (2008). Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. Journal of Neuroscience, 28, 5268–5280.PubMedCrossRefGoogle Scholar
  23. Lisman, J. E. (1997). Bursts as a unit of neural information: Making unreliable synapses reliable. Trends in Neurosciences, 20, 38–43.PubMedCrossRefGoogle Scholar
  24. Maass, W., & Natschläger, T. (2000). A model for fast analog computation based on unreliable synapses. Neural Computation, 12(7), 1679–1704.PubMedCrossRefGoogle Scholar
  25. Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics, 50(6), 1645–1662.CrossRefGoogle Scholar
  26. Rosenmund, C., Clements, J., & Westbrook, G. (1993). Nonuniform probability of glutamate release at a hippocampal synapse. Science, 262, 754–757.PubMedCrossRefGoogle Scholar
  27. Senn, W., Markram, H., & Tsodyks, M. (2001). An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Computation, 13(1), 35–67.PubMedCrossRefGoogle Scholar
  28. Seung, H. S. (2003). Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40(6), 1063–1073.PubMedCrossRefGoogle Scholar
  29. Stevens, C. F., & Wang, Y. (1994). Changes in reliability of synaptic function as a mechanism for plasticity. Nature, 371, 704–707.PubMedCrossRefGoogle Scholar
  30. Timme, M., & Wolf, F. (2008). The simplest problem in the collective dynamics of neural networks: is synchrony stable? Nonlinearity 21, 1579–1599.CrossRefGoogle Scholar
  31. Timme, M., Wolf, F., & Geisel, T. (2002). Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators. Physical Review Letters, 89, 258701.PubMedCrossRefGoogle Scholar
  32. Tuckwell, H. C. (1988). Introduction to theoretical neurobiology. New York: Cambridge University Press.Google Scholar
  33. van Vreeswijk, C. (1996). Partial synchronization in populations of pulse-coupled oscillators. Physical Review E, 54(5), 5522–5537.CrossRefGoogle Scholar
  34. van Vreeswijk, C. (2000). Analysis of the asynchronous state in networks of strongly coupled oscillators. Physical Review Letters, 84(22), 5110–5113.PubMedCrossRefGoogle Scholar
  35. van Vreeswijk, C., Abbott, L. F., & Ermentrout, G. B. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1, 313–321.PubMedCrossRefGoogle Scholar
  36. van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726.PubMedCrossRefGoogle Scholar
  37. Zillmer, R., Livi, R., Politi, A., & Torcini, A. (2007). Stability of the splay state in pulse-coupled networks. Physical Review E 76(4), 046102.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and AstrophysicsUniversity of WürzburgWürzburgGermany
  2. 2.Department of PhysiologyUniversity of BernBernSwitzerland

Personalised recommendations