Skip to main content
Log in

Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web-based architecture

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A Web-based simulation system of the spinal cord circuitry responsible for muscle control is described. The simulator employs two-compartment motoneuron models for S, FR and FF types, with synaptic inputs acting through conductance variations. Four motoneuron pools with their associated interneurons are represented in the simulator, with the possibility of inclusion of more than 2,000 neurons and 2,000,000 synapses. Each motoneuron action potential is followed, after a conduction delay, by a motor unit potential and a motor unit twitch. The sums of all motor unit potentials and twitches result in the electromyogram (EMG), and the muscle force, respectively. Inputs to the motoneuron pool come from populations of interneurons (Ia reciprocal inhibitory interneurons, Ib interneurons, and Renshaw cells) and from stochastic point processes associated with descending tracts. To simulate human electrophysiological experiments, the simulator incorporates external nerve stimulation with orthodromic and antidromic propagation. This provides the mechanisms for reflex generation and activation of spinal neuronal circuits that modulate the activity of another motoneuron pool (e.g., by reciprocal inhibition). The generation of the H-reflex by the Ia-motoneuron pool system and its modulation by spinal cord interneurons is included in the simulation system. Studies with the simulator may include the statistics of individual motoneuron or interneuron spike trains or the collective effect of a motor nucleus on the dynamics of muscle force control. Properties associated with motor-unit recruitment, motor-unit synchronization, recurrent inhibition and reciprocal inhibition may be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275, 220–224.

    PubMed  CAS  Google Scholar 

  • Andreassen, S., & Arendt-Nielsen, L. (1987). Muscle fibre conduction velocity in motor units of the human anterior tibial muscle: a new size principle parameter. Journal of Physiology, 391, 561–571.

    PubMed  CAS  Google Scholar 

  • Andreassen, S., & Rosenfalck, A. (1980). Regulation of the firing pattern of single motor units. Journal of Neurology Neurosurgery and Psychiatry, 43, 897–906.

    CAS  Google Scholar 

  • Ariano, M. A., Armstrong, R. B., & Edgerton, V. R. (1973). Hindlimb muscle fiber populations of 5 mammals. Journal of Histochemistry & Cytochemistry, 21, 51–55.

    CAS  Google Scholar 

  • Awiszus, F., & Feistner, H. (1993). The Relationship between estimates of Ia-Epsp amplitude and conduction-velocity in human soleus motoneurons. Experimental Brain Research, 95, 365–370.

    CAS  Google Scholar 

  • Banks, R. W. (2006). An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. Journal of Anatomy, 208, 753–768.

    PubMed  CAS  Google Scholar 

  • Barret, J. N., & Crill, W. E. (1974). Specific membrane properties of cat motoneurons. Journal of Physiology, 239, 301–324.

    Google Scholar 

  • Bashor, D. P. (1998). A large-scale model of some spinal reflex circuits. Biological Cybernetics, 78, 147–157.

    PubMed  CAS  Google Scholar 

  • Binder, M. D., Heckman, C. J., & Powers, R. K. (1996). The physiological control of motoneuron activity. Handbook of physiology. Section 12: Exercise: Regulation and integration of multiple systems pp. 3–53. New York: Oxford University Press.

    Google Scholar 

  • Booth, V., & Rinzel, J. (1995). A minimal, compartmental model for a dendritic origin of bistability of motoneuron firing patterns. Journal of Computational Neuroscience, 2, 299–312.

    PubMed  CAS  Google Scholar 

  • Bower, J. M., Beeman, D., & Hucka, M. (2003). The GENESIS simulation system. The handbook of brain theory and neural networks pp. 475–478. Cambridge, MA: MIT Press.

    Google Scholar 

  • Buchthal, F., & Schmalbruch, H. (1980). Motor unit of mammalian muscle. Physiological Reviews, 60, 90–142.

    PubMed  CAS  Google Scholar 

  • Bui, T. V., Cushing, S., Dewey, D., Fyffe, R. E., & Rose, P. K. (2003). Comparison of the morphological and electrotonic properties of Renshaw cells, Ia inhibitory interneurons, and motoneurons in the cat. Journal of Neurophysiology, 90, 2900–2918.

    PubMed  CAS  Google Scholar 

  • Bui, T. V., Ter-Mikaelian, M., Bedrossian, D., & Rose, P. K. (2006). Computational estimation of the distribution of L-type Ca(2+) channels in motoneurons based on variable threshold of activation of persistent inward currents. Journal of Neurophysiology, 95, 225–241.

    PubMed  CAS  Google Scholar 

  • Burke, R. E. (1981). Motor unit: anatomy, physiology and functional organization. In V. B. Brooks (Ed), Handbook of physiology, The Nervous System. Section II Part I. Bethesda: Am Physiol Soc.

  • Burke, R. E. (2004). Spinal cord: ventral horn. In G. M. Shepherd (Ed.) The synaptic organization of the brain. New York: Oxford University Press.

    Google Scholar 

  • Burke, R. E., Levine, D. N., Tsairis, P., & Zajac, F. E. (1973). Physiological types and histochemical profiles in motor units of cat gastrocnemius. Journal of Physiology, 234, 723–748.

    PubMed  CAS  Google Scholar 

  • Burke, R. E., Rudomin, P., & Zajac, F. E. (1970). Catch property in single mammalian motor units. Science, 168, 122–124.

    PubMed  CAS  Google Scholar 

  • Burke, R. E., Strick, P. L., Kanda, K., Kim, C. C., & Walmsley, B. (1977). Anatomy of medial gastrocnemius and soleus motor nuclei in cat spinal cord. Journal of Neurophysiology, 40, 667–680.

    PubMed  CAS  Google Scholar 

  • Capaday, C., & Stein, R. B. (1987). A method for simulating the reflex output of a motoneuron pool. Journal of Neuroscience Methods, 21, 91–104.

    PubMed  CAS  Google Scholar 

  • Capek, R., & Esplin, B. (1977). Homosynaptic depression and transmitter turnover in spinal monosynaptic pathway. Journal of Neurophysiology, 40, 95–105.

    PubMed  CAS  Google Scholar 

  • Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book. Cambridge: Cambridge University Press.

    Google Scholar 

  • Carr, P. A., Alvarez, F. J., Leman, E. A., & Fyffe, R. E. W. (1998). Calbindin D28k expression in immunohistochemically identified Renshaw cells. Neuroreport, 9, 2657–2661.

    Article  PubMed  CAS  Google Scholar 

  • Chan, K. M., Doherty, T. J., & Brown, W. F. (2001). Contractile properties of human motor units in health, aging, and disease. Muscle and Nerve, 24, 1113–1133.

    PubMed  CAS  Google Scholar 

  • Chin, L., Yue, P., Feng, J. J., & Seow, C. Y. (2006). Mathematical simulation of muscle cross-bridge cycle and force-velocity relationship. Biophysical Journal, 91, 3653–3663.

    PubMed  CAS  Google Scholar 

  • Cisi, R. R. L., & Kohn, A. F. (2004). Spinal cord neuronal network simulator. 28th Conference of the Canadian Medical and Biological Engineering Society, Quebec, Canada.

  • Cisi, R. R. L., & Kohn, A. F. (2007). H-reflex depression simulated by a biologically realistic motoneuron network. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France.

  • Clamann, H. P. (1969). Statistical analysis of motor unit firing patterns in a human skeletal muscle. Biophysical Journal, 9, 1233–1251.

    PubMed  CAS  Google Scholar 

  • Cleveland, S., Kuschmierz, A., & Ross, H. G. (1981). Static input-output relations in the spinal recurrent inhibitory pathway. Biological Cybernetics, 40, 223–231.

    PubMed  CAS  Google Scholar 

  • Cooper, S. (1966). Muscle spindles and motor units. In B. L. Andrew (Ed.) Control and innervation of skeletal muscle (pp. 9–17). Edinburgh: Livingstone.

    Google Scholar 

  • Cox, D. R., & Isham, V. (1980). Point processes. London: Chapman and Hall.

    Google Scholar 

  • Cox, D. R., & Lewis, P. A. W. (1966). The statistical analysis of series of events. London: Methuen.

    Google Scholar 

  • Cullheim, S., & Kellerth, J. O. (1978). Morphological-study of axons and recurrent axon collaterals of cat alpha-motoneurones supplying different functional types of muscle unit. Journal of Physiology, 281, 301–313.

    PubMed  CAS  Google Scholar 

  • Dai, Y., Jones, K. E., Fedirchuk, B., McCrea, D. A., & Jordan, L. M. (2002). A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneurones. Journal of Physiology, 544, 521–536.

    PubMed  CAS  Google Scholar 

  • Datta, A. K., Farmer, S. F., & Stephens, J. A. (1991). Central nervous pathways underlying synchronization of human motor unit firing studied during voluntary contractions. Journal of Physiology, 432, 401–425.

    PubMed  CAS  Google Scholar 

  • De Luca, C. J., Foley, P. J., & Erim, Z. (1996). Motor unit properties in constant-force isometric contractions. Journal of Neurophysiology, 76, 1503–1516.

    PubMed  Google Scholar 

  • De Luca, C. J., & Forrest, W. J. (1973). Some properties of motor unit action potential trains recorded during constant force isometric contractions in man. Kybernetik, 12, 160–168.

    PubMed  Google Scholar 

  • Destexhe, A. (1997). Conductance-based integrate-and-fire models. Neural Computation, 9, 503–514.

    PubMed  CAS  Google Scholar 

  • Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994a). An efficient method for computing synaptic conductances based on a kinetic-model of receptor-binding. Neural Computation, 6, 14–18.

    Google Scholar 

  • Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994b). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.

    PubMed  CAS  Google Scholar 

  • Dum, R. P., & Kennedy, T. T. (1980). Physiological and histochemical-characteristics of motor units in cat tibialis anterior and extensor digitorum longus muscles. Journal of Neurophysiology, 43, 1615–1630.

    PubMed  CAS  Google Scholar 

  • Feinstein, B., Lindegard, B., Nyman, E., & Wohlfart, G. (1955). Morphologic studies of motor units in normal human muscles. Acta Anatomica, 23, 127–142.

    PubMed  CAS  Google Scholar 

  • Finkel, A. S., & Redman, S. J. (1983). The synaptic current evoked in cat spinal motoneurones by impluses in single group Ia axons. Journal of Physiology, 342, 615–632.

    PubMed  CAS  Google Scholar 

  • Fleshman, J. W., Segev, I., & Burke, R. E. (1988). Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. Journal of Neurophysiology, 60, 60–85.

    PubMed  CAS  Google Scholar 

  • Floeter, M. K., & Kohn, A. F. (1997). H-Reflex of different sizes exhibit differential sensitivity to low frequency depression. Electroencephalography and Clinical Neurophysiology, 105, 470–475.

    PubMed  CAS  Google Scholar 

  • Friedman, W. A., Sypert, G. M., Munson, J. B., & Fleshman, J. W. (1981). Recurrent inhibition in type-identified motoneurons. Journal of Neurophysiology, 46, 1349–1359.

    PubMed  CAS  Google Scholar 

  • Fuglevand, A. J., Winter, D., & Patla, A. E. (1993). Models of recruitment and rate coding organization in motor-unit pools. Journal of Neurophysiology, 70, 2470–2488.

    PubMed  CAS  Google Scholar 

  • Fuglevand, A. J., Winter, D. A., Patla, A. E., & Stashuk, D. (1992). Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biological Cybernetics, 67, 143–153.

    PubMed  CAS  Google Scholar 

  • Garnett, R. A. F., O’Donovan, M. J., Stephens, J. A., & Taylor, A. (1979). Motor Unit Organization of Human Medial Gastrocnemius. Journal of Physiology, 287, 33–43.

    PubMed  CAS  Google Scholar 

  • Giugliano, M. (2000). Synthesis of generalized algorithms for the fast computation of synaptic conductances with Markov kinetic models in large network simulations. Neural Computation, 12, 903–931.

    PubMed  CAS  Google Scholar 

  • Halonen, J. P., Falck, B., & Kalino, H. (1981). The firing rate of motor units in neuromuscular disorders. Journal of Neurophysiology, 225, 269–276.

    CAS  Google Scholar 

  • Heckman, C.J., Gorassini, M.A., & Bennett, D.J. (2005). Persistent inward currents in motoneuron dendrites: implications for motor output. Muscle and Nerve, 31, 135–156.

    Google Scholar 

  • Henneman, E., Somjen, G., & Carpenter, D. O. (1965). Excitability and inhibitability of motoneurons of different sizes. Journal of Neurophysiology, 28, 599–620.

    PubMed  CAS  Google Scholar 

  • Hermens, J. H., Baten, C. T. M., Boom, H. B. K., & Rutten, W. L. C. (1992). Distribution of MUAP amplitude and duration estimated from surface EMG. Proceedings of the 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Paris, France.

  • Hines, M. L., Eichner, H., & Schurmann, F. (2008). Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. Journal of Computational Neuroscience (in press).

  • Hultborn, H., Katz, R., & Mackel, R. (1988). Distribution of recurrent inhibition within a motor nucleus. II. Amount of recurrent inhibition in motoneurones to fast and slow units. Acta Physiologica Scandinavica, 34, 363–374.

    Google Scholar 

  • Hultborn, H., & Pierrot-Deseilligny, E. (1979). Input–output relations in the pathways of recurrent inhibition to motoneurones in the cat. Journal of Physiology, 297, 267–287.

    PubMed  CAS  Google Scholar 

  • Ivashko, D. G., Prilutsky, B. I., Markin, S. N., Chapin, J. K., & Rybak, I. A. (2003). Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion. Neurocomputing, 52–4, 621–629.

    Google Scholar 

  • Jankowska, E. (1992). Interneuronal relay in spinal pathways from proprioceptors. Progress in Neurobiology, 38, 335–378.

    PubMed  CAS  Google Scholar 

  • Jankowska, E., & Hammar, I. (2002). Spinal interneurones; how can studies in animals contribute to the understanding of spinal interneuronal systems in man? Brain Research Reviews, 40, 19–28.

    PubMed  CAS  Google Scholar 

  • Jimenez, J., Easton, J. K., & Redford, J. B. (1970). Conduction studies of the anterior and posterior tibial nerves. Archives of Physical Medicine and Rehabilitation, 51, 164–169.

    PubMed  CAS  Google Scholar 

  • Johnson, M. A., Polgar, J., Weightman, D., & Appleton, D. (1973). Data on the distribution of fibre types in thirty-six human muscles an autopsy study. Journal of Neurological Sciences, 18, 111–129.

    CAS  Google Scholar 

  • Kernell, D. (1965). High-frequency repetitive firing of cat lumbosacral motoneurones stimulates by long-lasting injected currents. Acta Physiologica Scandinavica, 65, 74–86.

    Google Scholar 

  • Kernell, D. (1972). The early phase of adaptation in repetitive impulse discharges of cat spinal motoneurones. Brain Research, 41, 184–186.

    PubMed  CAS  Google Scholar 

  • Kernell, D. (1986). Organization and properties of spinal motoneurones and motor units. Progress in Brain Research, 64, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Kernell, D., Eerbeek, O., & Verhey, B. A. (1983). Relation between isometric force and stimulus rate in cat’s hindlimb motor units of different twitch contraction time. Experimental Brain Research, 50, 220–227.

    CAS  Google Scholar 

  • Kernell, D., & Monster, A. W. (1982). Time course and properties of late adaptation in spinal motoneurones of the cat. Experimental Brain Research, 46, 191–196.

    CAS  Google Scholar 

  • Kohn, A. F., Floeter, M. K., & Hallet, M. (1995). A model-based approach for the quantification of H reflex depression in humans. Proceedings of the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, Canada.

  • Kohn, A. F., Floeter, M. K., & Hallett, M. (1997). Presynaptic inhibition compared with homosynaptic depression as an explanation for soleus H-reflex depression in humans. Experimental Brain Research, 116, 375–380.

    CAS  Google Scholar 

  • Lo Conte, L. R., Merletti, R., & Sandri, G. V. (1994). Hermite expansions of compact support waveforms: applications to myoelectric signals. IEEE Transactions on Biomedical Engineering, 41, 1147–1159.

    PubMed  CAS  Google Scholar 

  • Lowery, M. M., & Erim, Z. (2005). A simulation study to examine the effect of common motoneuron inputs on correlated patterns of motor unit discharge. Journal of Computational Neuroscience, 19, 107–124.

    PubMed  Google Scholar 

  • Lytton, W. W. (1996). Optimizing synaptic conductance calculation for network simulations. Neural Computation, 8, 501–509.

    PubMed  CAS  Google Scholar 

  • Macefield, V. G., Fuglevand, J., & Bigland-Ritchie, B. (1996). Contractile properties of single motor units in human toe extensor assessed by intraneural motor axon stimulation. Journal of Neurophysiology, 75, 2509–2519.

    PubMed  CAS  Google Scholar 

  • MacGregor, R. (1987). Neural and brain modeling. New York: Academic.

    Google Scholar 

  • Maganaris, C. N., Baltzopoulos, V., & Sargeant, A. (1998). In vivo measurement of the triceps surae complex architecture in man: implications for muscle function. Journal of Physiology, 512, 603–614.

    PubMed  CAS  Google Scholar 

  • Maltenfort, M. G., Heckman, C. J., & Rymer, W. Z. (1998). Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: a simulation study. Journal of Neurophysiology, 80, 309–323.

    PubMed  CAS  Google Scholar 

  • McComas, A. J. (1991). Invited review: motor unit estimation: methods, results and present status. Muscle and Nerve, 14, 585–597.

    PubMed  CAS  Google Scholar 

  • McCurdy, M. L., & Hamm, T. M. (1994a). Spatial and temporal features of recurrent facilitation among motoneurons innervating synergistic muscle of the cat. Journal of Neurophysiology, 72, 227–234.

    PubMed  CAS  Google Scholar 

  • McCurdy, M. L., & Hamm, T. M. (1994b). Topography of recurrent inhibition postsynaptic potentials between individual motoneurons in the cat. Journal of Neurophysiology, 72, 214–226.

    PubMed  CAS  Google Scholar 

  • Meunier, S., Kwon, J., Russmann, H., Ravindran, S., Mazzocchio, R., & Cohen, L. (2007). Spinal use-dependent plasticity of synaptic transmission in humans after a single cycling session. Journal of Physiology, 579, 375–388.

    PubMed  CAS  Google Scholar 

  • Mileusnic, M. P., Brown, I. E., Lan, N., & Loeb, G. E. (2006). Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. Journal of Neurophysiology, 96, 1772–1788.

    PubMed  Google Scholar 

  • Mileusnic, M. P., & Loeb, G. E. (2006). Mathematical models of proprioceptors. II. Structure and function of the Golgi tendon organ. Journal of Neurophysiology, 96, 1789–1802.

    PubMed  Google Scholar 

  • Misiaszek, J. E. (2003). The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle and Nerve, 28, 144–160.

    PubMed  Google Scholar 

  • Mochizuki, G., Ivanova, T. D., & Garland, S. J. (2005). Synchronization of motor units in human soleus muscle during standing postural tasks. Journal of Neurophysiology, 94, 62–69.

    PubMed  CAS  Google Scholar 

  • Moritz, C. T., Barry, B. K., Pascoe, M. A., & Enoka, R. M. (2005). Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. Journal of Neurophysiology, 93, 2449–2459.

    PubMed  Google Scholar 

  • Nussbaumer, R. M., Ruegg, D. G., Studer, L. M., & Gabriel, J. P. (2002). Computer simulation of the motoneuron pool-muscle complex. I. Input system and motoneuron pool. Biological Cybernetics, 86, 317–333.

    PubMed  CAS  Google Scholar 

  • Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999). Discrete-time signal processing. New Jersey: Prentice Hall.

    Google Scholar 

  • Otazu, G. H., Futami, R., & Hoshimiya, N. (2001). A muscle activation model of variable stimulation frequency response and stimulation history, based on positive feedback in calcium dynamics. Biological Cybernetics, 84, 193–206.

    PubMed  CAS  Google Scholar 

  • Person, R. S., & Kudina, L. P. (1972). Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephalography and Clinical Neurophysiology, 32, 471–483.

    PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny, E., & Burke, D. (2005). The circuitry of the human spinal cord. New York: Cambridge University Press.

    Google Scholar 

  • Plonsey, R. (1974). The active fiber in a volume conductor. IEEE Transactions on Biomedical Engineering, 21, 371–381.

    PubMed  CAS  Google Scholar 

  • Poliakov, A. V., Miles, T. S., & Nordstrom, M. A. (1995). Discharge patterns of tonically firing human motoneurons. Biological Cybernetics, 73, 189–194.

    PubMed  CAS  Google Scholar 

  • Powers, R. K. (1993). A variable-threshold motoneuron model that incorporates time and voltage-dependent potassium and calcium conductances. Journal of Neurophysiology, 70, 246–262.

    PubMed  CAS  Google Scholar 

  • Powers, R. K., Sawczuk, A., Musick, J. R., & Binder, M. D. (1999). Multiple mechanisms of spike-frequency adaptation in motoneurones. Journal of Physiology - Paris, 93, 101–114.

    CAS  Google Scholar 

  • Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. Journal of Neurophysiology, 30, 1138–1168.

    PubMed  CAS  Google Scholar 

  • Rall, W., Burke, R. E., Holmes, W. R., Jack, J. J. B., Redman, S. J., & Segev, I. (1992). Matching dendritic neuron models to experimental-data. Physiological Reviews, 72, S159–S186.

    PubMed  CAS  Google Scholar 

  • Rosenfalck, A., & Andreassen, S. (1980). Impaired regulation of force and firing pattern of single motor units in patients with spasticity. Journal of Neurology, Neurosurgery and Psychiatry, 43, 907–916.

    CAS  Google Scholar 

  • Schwindt, P. C., & Crill, W. E. (1984). Membrane properties of cat spinal motoneurons. Handbook of the Spinal Cord, 2/3, 199–242.

    Google Scholar 

  • Scott, J. G., & Mendell, L. M. (1976). Individual Epsps produced by single triceps surae Ia afferent-fibers in homonymous and heteronymous motoneurons. Journal of Neurophysiology, 39, 679–692.

    PubMed  CAS  Google Scholar 

  • Siebert, T., Rode, C., Herzog, W., Till, O., & Blickhan, R. (2008). Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biological Cybernetics, 98, 133–143.

    PubMed  Google Scholar 

  • Stegeman, D. F., Merletti, R., & Hermens, H. J. (2004). EMG modeling and simulation. Electromyography. In R. Merletti, & P. A. Parker (Eds.) Physiology, engineering and noninvasive applications. Hoboken: Wiley.

    Google Scholar 

  • Stienen, A. H., Schouten, A. C., Schuurmans, J., & van der Helm, F. C. (2007). Analysis of reflex modulation with a biologically realistic neural network. Journal of Computational Neuroscience, 23, 333–348.

    PubMed  Google Scholar 

  • Stuart, G. J., & Redman, S. J. (1990). Voltage dependence of Ia reciprocal inhibitory currents in cat spinal motoneurones. Journal of Physiology, 420, 111–125.

    PubMed  CAS  Google Scholar 

  • Subramanian, K., Okey, P., Miller, M., & Bashor, D. (2005). NVIZ: An integrated environment for simulation, visualization and analysis of spinal neuronal dynamics. Journal of Imaging Science and Technology, 49, 505–519.

    CAS  Google Scholar 

  • Taylor, A. M., & Enoka, R. M. (2004). Quantification of the factors that influence discharge correlation in model motor neurons. Journal of Neurophysiology, 91, 796–814.

    PubMed  Google Scholar 

  • Uchiyama, T., Johansson, H., & Windhorst, U. (2003). A model of the feline medial gastrocnemius motoneuron-muscle system subjected to recurrent inhibition. Biological Cybernetics, 89, 139–151.

    PubMed  Google Scholar 

  • Uchiyama, T., & Windhorst, U. (2007). Effects of spinal recurrent inhibition on motoneuron short-term synchronization. Biological Cybernetics, 96, 561–575.

    PubMed  Google Scholar 

  • Van Zandwijk, J. P., Bobbert, M. F., Baan, G. C., & Huijing, P. A. (1996). From twitch to tetanus: performance of excitation dynamics optimized for a twitch in predicted tetanic muscle forces. Biological Cybernetics, 75, 409–417.

    PubMed  Google Scholar 

  • Vanderhorst, V. G., & Holstege, G. (1997). Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. Journal of Comparative Neurology, 382, 46–76.

    PubMed  CAS  Google Scholar 

  • Vandervoort, A. A., & McComas, A. J. (1983). A comparison of the contractile properties of the human gastrocnemius and soleus muscles. European Journal of Applied Physiology and Occupational Physiology, 51, 435–440.

    PubMed  CAS  Google Scholar 

  • Vieira, M. F., & Kohn, A. F. (2007). Compartmental models of mammalian motoneurons of types S, FR and FF and their computer simulation. Computers in Biology and Medicine, 37, 842–860.

    PubMed  CAS  Google Scholar 

  • Walmsley, B., & Tracey, D. J. (1981). An intracellular study of Renshaw cells. Brain Research, 223, 170–175.

    PubMed  CAS  Google Scholar 

  • Windhorst, U. (1990). Activation of Renshaw cells. Progress in Neurobiology, 35, 135–179.

    PubMed  CAS  Google Scholar 

  • Windhorst, U. (1996). On the role of recurrent inhibitory feedback in motor control. Progress in Neurobiology, 49, 517–587.

    PubMed  CAS  Google Scholar 

  • Yao, W., Fuglevand, R. J., & Enoka, R. M. (2000). Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. Journal of Neurophysiology, 83, 441–452.

    PubMed  CAS  Google Scholar 

  • Zengel, J. E., Reid, S. A., Sypert, G. W., & Munson, J. B. (1985). Membrane electrical-properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat. Journal of Neurophysiology, 53, 1323–1344.

    PubMed  CAS  Google Scholar 

  • Zhou, P., & Rymer, W. Z. (2004). MUAP number estimates in surface EMG: template-matching methods and their performance boundaries. Annals of Biomedical Engineering, 32, 1007–1015.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fapesp and CNPq (Brazil) to A.F. Kohn. R.R.L. Cisi was a recipient of a fellowship from Fapesp.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rogerio R. L. Cisi or André F. Kohn.

Additional information

Action Editor: Eberhard Fetz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cisi, R.R.L., Kohn, A.F. Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web-based architecture. J Comput Neurosci 25, 520–542 (2008). https://doi.org/10.1007/s10827-008-0092-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0092-8

Keywords

Navigation