Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics

Abstract

To establish the relationship between locomotory behavior and dynamics of neural circuits in the nematode C. elegans we combined molecular and theoretical approaches. In particular, we quantitatively analyzed the motion of C. elegans with defective synaptic GABA and acetylcholine transmission, defective muscle calcium signaling, and defective muscles and cuticle structures, and compared the data with our systems level circuit model. The major experimental findings are: (1) anterior-to-posterior gradients of body bending flex for almost all strains both for forward and backward motion, and for neuronal mutants, also analogous weak gradients of undulatory frequency, (2) existence of some form of neuromuscular (stretch receptor) feedback, (3) invariance of neuromuscular wavelength, (4) biphasic dependence of frequency on synaptic signaling, and (5) decrease of frequency with increase of the muscle time constant. Based on (1) we hypothesize that the Central Pattern Generator (CPG) is located in the head both for forward and backward motion. Points (1) and (2) are the starting assumptions for our theoretical model, whose dynamical patterns are qualitatively insensitive to the details of the CPG design if stretch receptor feedback is sufficiently strong and slow. The model reveals that stretch receptor coupling in the body wall is critical for generation of the neuromuscular wave. Our model agrees with our behavioral data (3), (4), and (5), and with other pertinent published data, e.g., that frequency is an increasing function of muscle gap-junction coupling.

This is a preview of subscription content, log in to check access.

References

  1. Akay, T., Haehn, S., Schmitz, J., & Buschges, A. (2004). Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology, 92, 42–51.

    PubMed  Article  Google Scholar 

  2. Bargmann, C. I. (1998). Neurobiology of the Caenorhabditis elegans genome. Science, 282, 2028–2033.

    PubMed  Article  CAS  Google Scholar 

  3. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.

    PubMed  CAS  Google Scholar 

  4. Bryden, J., & Cohen, N. (2004). A simulation model of the locomotion controlers for the nematode Caenorhabditis elegans. In: S. Schaal et al. (Eds.), From animals to animats 8: Proc. Eight Intern. Conf. on Simulation of Adaptive Behavior (pp. 183–192). Cambridge: MIT Press.

    Google Scholar 

  5. Chalfie, M., & White, J. (1988). The nervous system. In: W. B. Wood (Ed.), The nematode Caenorhabditis elegans (pp. 337–391). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  6. Chalfie, M., et al. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. Journal of Neuroscience, 5, 956–964.

    PubMed  CAS  Google Scholar 

  7. Chen, B. L., Hall, D. H., & Chklovskii, D. B. (2006). Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Sciences of the United States of America, 103, 4723–4728.

    PubMed  Article  CAS  Google Scholar 

  8. Cronin, C. J., et al. (2005). An automated system for measuring parameters of nematode sinusoidal movement. BMC Genetics, 6, 5.

    PubMed  Article  CAS  Google Scholar 

  9. Davis, R. E., & Stretton, A. O. W. (1989). Signaling properties of Ascaris motorneurons: Graded active responses, graded synaptic transmission and tonic transmitter release. Journal of Neuroscience, 9, 415–425.

    PubMed  CAS  Google Scholar 

  10. Davies, A. G., et al. (2003). A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell, 115, 655–666.

    PubMed  Article  CAS  Google Scholar 

  11. Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210, 492–498.

    PubMed  Article  CAS  Google Scholar 

  12. de Bono, M., & Maricq, A. V. (2005). Neuronal substrates of complex behaviors in C. elegans. Annual Review of Neuroscience, 28, 451–501.

    PubMed  Article  CAS  Google Scholar 

  13. Francis, M. M., Mellem, J. E., & Maricq, A. V. (2003). Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans. Trends in Neurosciences, 26, 90–99.

    PubMed  Article  CAS  Google Scholar 

  14. Friesen, W. O., & Cang, J. (2001). Sensory and central mechanisms control intersegmental coordination. Current Opinion in Neurobiology, 11, 678–683.

    PubMed  Article  CAS  Google Scholar 

  15. Gengyo-Ando, K., et al. (1993). The C. elegans unc-18 gene encodes a protein expressed in motor neurons. Neuron, 11, 703–711.

    PubMed  Article  CAS  Google Scholar 

  16. Goodman, M. B., Hall, D. H., Avery, L., & Lockery, S. R. (1998). Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron, 20, 763–772.

    PubMed  Article  CAS  Google Scholar 

  17. Goodman, M. B., & Schwarz, E. M. (2003). Transducing touch in Caenorhabditis elegans. Annual Review of Physiology, 65, 429–452.

    PubMed  Article  CAS  Google Scholar 

  18. Gray, J. M., Hill, J. J., & Bargmann, C. I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 102, 3184–3191.

    PubMed  Article  CAS  Google Scholar 

  19. Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 55, 247–303.

    PubMed  CAS  Google Scholar 

  20. Hobert, O. (2003). Behavioral plasticity in C. elegans: Paradigms, circuits, genes. Journal of Neurobiology, 54, 203–223.

    PubMed  Article  CAS  Google Scholar 

  21. Jin, Y., et al. (1999). The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. Journal of Neuroscience, 19, 539–548.

    PubMed  CAS  Google Scholar 

  22. Jospin, M., Jacquemond, V., Mariol, M. C., Segalat, L., & Allard, B. (2002). The L-type voltage-dependent Ca2 +  channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. Journal of Cell Biology, 159, 337–347.

    PubMed  Article  CAS  Google Scholar 

  23. Karbowski, J., Cronin, C. J., Seah, A., Mendel, J. E., Cleary, D., & Sternberg, P. W. (2006). Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. Journal of Theoretical Biology, 242, 652–669.

    PubMed  Article  Google Scholar 

  24. Lee, R. Y. N., Lobel, L., Hengartner, M., Horvitz, H. R., & Avery, L. (1997). Mutations in the α1 subunit of an L-type voltage-activated Ca2 +  channel cause myotonia in Caenorhabditis elegans. EMBO Journal, 16, 6066–6076.

    PubMed  Article  CAS  Google Scholar 

  25. Li, W., Feng, Z., Sternberg, P. W., & Xu, X. Z. S. (2006). A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature, 440, 684–687.

    PubMed  Article  CAS  Google Scholar 

  26. Liu, Q., Chen, B., Gaier, E., Joshi, J., & Wang, Z.-W. (2006). Low conductance gap junctions mediate specific electrical coupling in body-wall muscle cells of Caenorhabdidtis elegans. Journal of Biological Chemistry, 281, 7881–7889.

    PubMed  Article  CAS  Google Scholar 

  27. Maduro, M., & Pilgrim, D. (1995). Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics, 141, 977–988.

    PubMed  CAS  Google Scholar 

  28. Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.

    PubMed  CAS  Google Scholar 

  29. Marder, E., Bucher, D., Schulz, D. J., & Taylor, A. L. (2005). Invertebrate central pattern generation moves along. Current Biology, 15, R685–R699.

    CAS  Google Scholar 

  30. Maryon, E. B., Coronado, R., & Anderson, P. (1996). unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction. Journal of Cell Biology, 134, 885–893.

    PubMed  Article  CAS  Google Scholar 

  31. Maryon, E. B., Saari, B., & Anderson, P. (1998). Muscle-specific functions of ryanodine receptor channels in Caenorhabditis elegans. Journal of Cell Science, 111, 2885–2895.

    PubMed  CAS  Google Scholar 

  32. McIntire, S. L., Jorgensen, E., Kaplan, J., & Horvitz, H. R. (1993). The GABAergic nervous system of Caenorhabditis elegans. Nature, 364, 337–341.

    PubMed  Article  CAS  Google Scholar 

  33. Mendel, J. E., et al. (1995). Participation of the protein Go in multiple aspects of behavior in C. elegans. Science, 267, 1652–1655.

    PubMed  Article  CAS  Google Scholar 

  34. Moerman, D. G., & Fire, A. (1997). Muscle: Structure, function, and development. In D. L. Riddle, et al. (Eds.), C. elegans II (pp. 417–470). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  35. Niebur, E., & Erdos, P. (1991). Theory of the locomotion of nematodes. Biophysical Journal, 60, 1132–1146.

    Article  PubMed  Google Scholar 

  36. Nusbaum, M. P., & Beenhakker M. P. (2002). A small-systems approach to motor pattern generation. Nature, 417, 343–350.

    PubMed  Article  CAS  Google Scholar 

  37. Okuda, T., Haga, T., Kanai, Y., Endou, H., Ishihara, T., & Katsura, I. (2000). Identification and characterization of the high-affinity choline transporter. Nature Neuroscience, 3, 120–125.

    PubMed  Article  CAS  Google Scholar 

  38. Schuske, K., Beg, A. A., & Jorgensen, E. M. (2004). The GABA nervous system in C. elegans. Trends in Neurosciences, 27, 407–414.

    PubMed  Article  CAS  Google Scholar 

  39. Segalat, L., Elkes, D. A., & Kaplan, J. M. (1995). Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science, 267, 1648–1651.

    PubMed  Article  CAS  Google Scholar 

  40. Skinner, F. K., & Mulloney, B. (1998). Intersegmental coordination in invertebrates and vertebrates. Current Opinion in Neurobiology, 8, 725–732.

    PubMed  Article  CAS  Google Scholar 

  41. Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Westview Press.

  42. Suzuki, H., et al. (2003). In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron, 39, 1005–1017.

    PubMed  Article  CAS  Google Scholar 

  43. Tavernarakis, N., Shreffler, W., Wang, S., & Driscoll, M. (1997). unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron, 18, 107–119.

    PubMed  Article  CAS  Google Scholar 

  44. Wang, Z. W., Saifee, O., Nonet, M. L., & Salkoff, L. (2001). Slo-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron, 32, 867–881.

    PubMed  Article  CAS  Google Scholar 

  45. Weimer, R. M., et al. (2003). Defects in synaptic vesicle docking in unc-18 mutants. Nature Neuroscience, 6, 1023–1030.

    PubMed  Article  CAS  Google Scholar 

  46. White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. B, 314, 1–340.

    Article  Google Scholar 

  47. Wicks, S. R., Roehrig, C. J., & Rankin, C. H. (1996). A dynamic network simulation of the nematode tap withdrawal circuits: Predictions concerning synaptic function using behavioral criteria. Journal of Neuroscience, 16, 4017–4031.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Karbowski.

Additional information

Action Editor: Frances K. Skinner

Electronic supplementary material

Below is the link to the supplementary materials

(PDF 60.4 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karbowski, J., Schindelman, G., Cronin, C.J. et al. Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. J Comput Neurosci 24, 253–276 (2008). https://doi.org/10.1007/s10827-007-0054-6

Download citation

Keywords

  • C. elegans
  • Circuit model for movement
  • Oscillations
  • Mechanosensory feedback
  • GABA
  • Acetylcholine
  • Calcium
  • Myosin
  • Mutants