Advertisement

Journal of Computational Neuroscience

, Volume 24, Issue 3, pp 253–276 | Cite as

Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics

  • Jan Karbowski
  • Gary Schindelman
  • Christopher J. Cronin
  • Adeline Seah
  • Paul W. Sternberg
Article

Abstract

To establish the relationship between locomotory behavior and dynamics of neural circuits in the nematode C. elegans we combined molecular and theoretical approaches. In particular, we quantitatively analyzed the motion of C. elegans with defective synaptic GABA and acetylcholine transmission, defective muscle calcium signaling, and defective muscles and cuticle structures, and compared the data with our systems level circuit model. The major experimental findings are: (1) anterior-to-posterior gradients of body bending flex for almost all strains both for forward and backward motion, and for neuronal mutants, also analogous weak gradients of undulatory frequency, (2) existence of some form of neuromuscular (stretch receptor) feedback, (3) invariance of neuromuscular wavelength, (4) biphasic dependence of frequency on synaptic signaling, and (5) decrease of frequency with increase of the muscle time constant. Based on (1) we hypothesize that the Central Pattern Generator (CPG) is located in the head both for forward and backward motion. Points (1) and (2) are the starting assumptions for our theoretical model, whose dynamical patterns are qualitatively insensitive to the details of the CPG design if stretch receptor feedback is sufficiently strong and slow. The model reveals that stretch receptor coupling in the body wall is critical for generation of the neuromuscular wave. Our model agrees with our behavioral data (3), (4), and (5), and with other pertinent published data, e.g., that frequency is an increasing function of muscle gap-junction coupling.

Keywords

C. elegans Circuit model for movement Oscillations Mechanosensory feedback GABA Acetylcholine Calcium Myosin Mutants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10827_2007_54_MOESM1_ESM.pdf (60 kb)
(PDF 60.4 KB)

References

  1. Akay, T., Haehn, S., Schmitz, J., & Buschges, A. (2004). Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology, 92, 42–51.PubMedCrossRefGoogle Scholar
  2. Bargmann, C. I. (1998). Neurobiology of the Caenorhabditis elegans genome. Science, 282, 2028–2033.PubMedCrossRefGoogle Scholar
  3. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.PubMedGoogle Scholar
  4. Bryden, J., & Cohen, N. (2004). A simulation model of the locomotion controlers for the nematode Caenorhabditis elegans. In: S. Schaal et al. (Eds.), From animals to animats 8: Proc. Eight Intern. Conf. on Simulation of Adaptive Behavior (pp. 183–192). Cambridge: MIT Press.Google Scholar
  5. Chalfie, M., & White, J. (1988). The nervous system. In: W. B. Wood (Ed.), The nematode Caenorhabditis elegans (pp. 337–391). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  6. Chalfie, M., et al. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. Journal of Neuroscience, 5, 956–964.PubMedGoogle Scholar
  7. Chen, B. L., Hall, D. H., & Chklovskii, D. B. (2006). Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Sciences of the United States of America, 103, 4723–4728.PubMedCrossRefGoogle Scholar
  8. Cronin, C. J., et al. (2005). An automated system for measuring parameters of nematode sinusoidal movement. BMC Genetics, 6, 5.PubMedCrossRefGoogle Scholar
  9. Davis, R. E., & Stretton, A. O. W. (1989). Signaling properties of Ascaris motorneurons: Graded active responses, graded synaptic transmission and tonic transmitter release. Journal of Neuroscience, 9, 415–425.PubMedGoogle Scholar
  10. Davies, A. G., et al. (2003). A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell, 115, 655–666.PubMedCrossRefGoogle Scholar
  11. Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210, 492–498.PubMedCrossRefGoogle Scholar
  12. de Bono, M., & Maricq, A. V. (2005). Neuronal substrates of complex behaviors in C. elegans. Annual Review of Neuroscience, 28, 451–501.PubMedCrossRefGoogle Scholar
  13. Francis, M. M., Mellem, J. E., & Maricq, A. V. (2003). Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans. Trends in Neurosciences, 26, 90–99.PubMedCrossRefGoogle Scholar
  14. Friesen, W. O., & Cang, J. (2001). Sensory and central mechanisms control intersegmental coordination. Current Opinion in Neurobiology, 11, 678–683.PubMedCrossRefGoogle Scholar
  15. Gengyo-Ando, K., et al. (1993). The C. elegans unc-18 gene encodes a protein expressed in motor neurons. Neuron, 11, 703–711.PubMedCrossRefGoogle Scholar
  16. Goodman, M. B., Hall, D. H., Avery, L., & Lockery, S. R. (1998). Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron, 20, 763–772.PubMedCrossRefGoogle Scholar
  17. Goodman, M. B., & Schwarz, E. M. (2003). Transducing touch in Caenorhabditis elegans. Annual Review of Physiology, 65, 429–452.PubMedCrossRefGoogle Scholar
  18. Gray, J. M., Hill, J. J., & Bargmann, C. I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 102, 3184–3191.PubMedCrossRefGoogle Scholar
  19. Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 55, 247–303.PubMedGoogle Scholar
  20. Hobert, O. (2003). Behavioral plasticity in C. elegans: Paradigms, circuits, genes. Journal of Neurobiology, 54, 203–223.PubMedCrossRefGoogle Scholar
  21. Jin, Y., et al. (1999). The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. Journal of Neuroscience, 19, 539–548.PubMedGoogle Scholar
  22. Jospin, M., Jacquemond, V., Mariol, M. C., Segalat, L., & Allard, B. (2002). The L-type voltage-dependent Ca2 +  channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. Journal of Cell Biology, 159, 337–347.PubMedCrossRefGoogle Scholar
  23. Karbowski, J., Cronin, C. J., Seah, A., Mendel, J. E., Cleary, D., & Sternberg, P. W. (2006). Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. Journal of Theoretical Biology, 242, 652–669.PubMedCrossRefGoogle Scholar
  24. Lee, R. Y. N., Lobel, L., Hengartner, M., Horvitz, H. R., & Avery, L. (1997). Mutations in the α1 subunit of an L-type voltage-activated Ca2 +  channel cause myotonia in Caenorhabditis elegans. EMBO Journal, 16, 6066–6076.PubMedCrossRefGoogle Scholar
  25. Li, W., Feng, Z., Sternberg, P. W., & Xu, X. Z. S. (2006). A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature, 440, 684–687.PubMedCrossRefGoogle Scholar
  26. Liu, Q., Chen, B., Gaier, E., Joshi, J., & Wang, Z.-W. (2006). Low conductance gap junctions mediate specific electrical coupling in body-wall muscle cells of Caenorhabdidtis elegans. Journal of Biological Chemistry, 281, 7881–7889.PubMedCrossRefGoogle Scholar
  27. Maduro, M., & Pilgrim, D. (1995). Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics, 141, 977–988.PubMedGoogle Scholar
  28. Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.PubMedGoogle Scholar
  29. Marder, E., Bucher, D., Schulz, D. J., & Taylor, A. L. (2005). Invertebrate central pattern generation moves along. Current Biology, 15, R685–R699.Google Scholar
  30. Maryon, E. B., Coronado, R., & Anderson, P. (1996). unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction. Journal of Cell Biology, 134, 885–893.PubMedCrossRefGoogle Scholar
  31. Maryon, E. B., Saari, B., & Anderson, P. (1998). Muscle-specific functions of ryanodine receptor channels in Caenorhabditis elegans. Journal of Cell Science, 111, 2885–2895.PubMedGoogle Scholar
  32. McIntire, S. L., Jorgensen, E., Kaplan, J., & Horvitz, H. R. (1993). The GABAergic nervous system of Caenorhabditis elegans. Nature, 364, 337–341.PubMedCrossRefGoogle Scholar
  33. Mendel, J. E., et al. (1995). Participation of the protein Go in multiple aspects of behavior in C. elegans. Science, 267, 1652–1655.PubMedCrossRefGoogle Scholar
  34. Moerman, D. G., & Fire, A. (1997). Muscle: Structure, function, and development. In D. L. Riddle, et al. (Eds.), C. elegans II (pp. 417–470). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  35. Niebur, E., & Erdos, P. (1991). Theory of the locomotion of nematodes. Biophysical Journal, 60, 1132–1146.CrossRefPubMedGoogle Scholar
  36. Nusbaum, M. P., & Beenhakker M. P. (2002). A small-systems approach to motor pattern generation. Nature, 417, 343–350.PubMedCrossRefGoogle Scholar
  37. Okuda, T., Haga, T., Kanai, Y., Endou, H., Ishihara, T., & Katsura, I. (2000). Identification and characterization of the high-affinity choline transporter. Nature Neuroscience, 3, 120–125.PubMedCrossRefGoogle Scholar
  38. Schuske, K., Beg, A. A., & Jorgensen, E. M. (2004). The GABA nervous system in C. elegans. Trends in Neurosciences, 27, 407–414.PubMedCrossRefGoogle Scholar
  39. Segalat, L., Elkes, D. A., & Kaplan, J. M. (1995). Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science, 267, 1648–1651.PubMedCrossRefGoogle Scholar
  40. Skinner, F. K., & Mulloney, B. (1998). Intersegmental coordination in invertebrates and vertebrates. Current Opinion in Neurobiology, 8, 725–732.PubMedCrossRefGoogle Scholar
  41. Strogatz, S. H. (1994). Nonlinear dynamics and chaos. Westview Press.Google Scholar
  42. Suzuki, H., et al. (2003). In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron, 39, 1005–1017.PubMedCrossRefGoogle Scholar
  43. Tavernarakis, N., Shreffler, W., Wang, S., & Driscoll, M. (1997). unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron, 18, 107–119.PubMedCrossRefGoogle Scholar
  44. Wang, Z. W., Saifee, O., Nonet, M. L., & Salkoff, L. (2001). Slo-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron, 32, 867–881.PubMedCrossRefGoogle Scholar
  45. Weimer, R. M., et al. (2003). Defects in synaptic vesicle docking in unc-18 mutants. Nature Neuroscience, 6, 1023–1030.PubMedCrossRefGoogle Scholar
  46. White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. B, 314, 1–340.CrossRefGoogle Scholar
  47. Wicks, S. R., Roehrig, C. J., & Rankin, C. H. (1996). A dynamic network simulation of the nematode tap withdrawal circuits: Predictions concerning synaptic function using behavioral criteria. Journal of Neuroscience, 16, 4017–4031.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jan Karbowski
    • 1
    • 2
  • Gary Schindelman
    • 1
  • Christopher J. Cronin
    • 1
  • Adeline Seah
    • 1
  • Paul W. Sternberg
    • 1
  1. 1.Howard Hughes Medical Institute and Division of Biology 156-29California Institute of TechnologyPasadenaUSA
  2. 2.Sloan-Swartz Center for Theoretical Neurobiology, Division of Biology 216-76California Institute of TechnologyPasadenaUSA

Personalised recommendations