Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation

Abstract

Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents—sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as “re-orthodromically” into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    Model code available at http://senselab.med.yale.edu/senselab/modeldb/ShowModel.asp?model=3810.

References

  1. Anderson, T. R., Hu, B., Iremonger, K., & Kiss, Z. H. (2006). Selective attenuation of afferent synaptic transmission as a mechanism of thalamic deep brain stimulation-induced tremor arrest. Journal of Neuroscience, 26, 841–850.

    PubMed  Article  CAS  Google Scholar 

  2. Asanuma, K., Tang, C., Ma, Y., Dhawan, V., Mattis, P., Edwards, C., et al. (2006). Network modulation in the treatment of Parkinson’s disease. Brain, 129, 2667–2678.

    PubMed  Article  Google Scholar 

  3. Ashby, P., & Rothwell, J. C. (2000). Neurophsysiologic aspects of deep brain stimulation. Neurology, 55(Suppl 6), S17–S20.

    PubMed  CAS  Google Scholar 

  4. Ashby, P., Paradiso, G., Saint-Cyr, J. A., Chen, R., Lang, A. E., & Lozano, A. M. (2001). Potentials recorded at the scalp by stimulation near the human subthalamic nucleus. Clinical Neurophysiology, 112, 431–437.

    PubMed  Article  CAS  Google Scholar 

  5. Baker, K. B., Montgomery, E. B. Jr., Rezai, A. R., Burgess, R., & Luders, H. O. (2002). Subthalamic nucleus deep brain stimulus evoked potentials: Physiological and therapeutic implications. Movement Disorders, 17, 969–983.

    PubMed  Article  Google Scholar 

  6. Baldissera, F., Lundberg, A., & Udo, M. (1972) Stimulation of pre- and postsynaptic elements in the red nucleus. Experimental Brain Research, 15, 151–167.

    CAS  Google Scholar 

  7. Barron, D. H., & Matthews, B. H. C. (1935). Intermittent conduction in the spinal cord. Journal of Physiology (London), 85, 73–103.

    CAS  Google Scholar 

  8. Benazzouz, A., Piallat, B., Pollak, P., & Benabid, A. L. (1995). Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: Electrophysiological data. Neuroscience Letter, 189, 77–80.

    Article  CAS  Google Scholar 

  9. Biedenbach, M. A., De Vito, J. L., & Brown, A. C. (1986). Pyramidal tract of the cat: Axon size and morphology. Experimental Brain Research, 61(2), 303–310.

    Article  CAS  Google Scholar 

  10. Butovas, S., & Schwarz, C. (2003). Spatiotemporal effects of microstimulation in rat neocortex: A parametric study using multielectrode recordings. Journal of Neurophysiology, 90, 3024–3039.

    PubMed  Article  Google Scholar 

  11. Ceballos-Baumann, A. O., Boecker, H., Bartenstein, P., von Falkenhayn, I., Riescher, H., Conrad, B., et al. (1999). A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: Enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Archives of Neurology, 56(8), 997–1003.

    PubMed  Article  CAS  Google Scholar 

  12. Chung, S. H., Raymond, S. A., & Lettivin, J. Y. (1970). Multiple meaning in single visual units. Brain, Behavior and Evolution, 3, 72–101.

    PubMed  CAS  Article  Google Scholar 

  13. Coleman, G. T., Mahns, D. A., Zhang, H. Q., & Rowe, M. J. (2003). Impulse propagation over tactile and kinaesthetic sensory axons to central target neurons of the cunaeate nucleus in the cat. Journal of Physiology, 550, 553–562.

    PubMed  Article  CAS  Google Scholar 

  14. Deibner, M. P., Pollack, P., Passingham, R., et al. (1993). Thalamic stimulation and suppression of tremor: Evidence of a cerebellar deactivation using PET. Brain, 116, 267–279.

    Article  Google Scholar 

  15. Deschenes, M., & Landry, P. (1980). Axonal branch diameter and spacing of nodes in the terminal arborization of identified thalamic and cortical neurons. Brain Research, 191(2), 538–544.

    PubMed  Article  CAS  Google Scholar 

  16. Dostrovsky, J. O., & Lozano, A. M. (2002). Mechanisms of deep brain stimulation. Movement Disorders, 17(Suppl. 3), S63–S68.

    PubMed  Article  Google Scholar 

  17. Dostrovsky, J. O., Levy, R., Wu, J. P., Hutchison, W. D., Tasker, R. R., & Lozano, A. M. (2000). Microstimulation-induced inhibition of neuronal firing in human globus pallidus. Journal of Neurophysiology, 84, 570–574.

    PubMed  CAS  Google Scholar 

  18. Engel, D. A., & Jonas, P. M. (2004). Presynaptic voltage-gated Na+ channels boost action potentials in hippocampal mossy fiber boutons. Program No. 397.4. Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience.

    Google Scholar 

  19. Filali, M., Hutchison, W. D., Palter, V. N., Lozano, A. M., & Dostrovsky, J. O. (2004). Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Experimental Brain Research, 156, 274–281.

    Article  Google Scholar 

  20. Frankenhaeuser, B., & Hodgkin, A. L. (1956). The after-effects of impulses in the giant nerve fibres of Loligo. Journal of Physiology (London), 131, 341–376.

    CAS  Google Scholar 

  21. Gauthier, J., Parent, M., Levesque, M., & Parent, A. (1999). The axonal arborization of single nigrostriatal neurons in rats. Brain Research, 834(1–2), 228–232.

    PubMed  Article  CAS  Google Scholar 

  22. Grafton, S. T., Turner, R. S., Desmurget, M., Bakay, R., Delong, M., Vitek, J., et al. (2006). Normalizing motor-related brain activity: Subthalamic nucleus stimulation in Parkinson disease. Neurology, 66(8), 1192–1199.

    PubMed  Article  CAS  Google Scholar 

  23. Goldstein, S. S., & Rall, W. (1974). Changes of action potential shape and velocity for changing core conductor geometry. Biophysical Journal, 14(10), 731–757.

    PubMed  CAS  Google Scholar 

  24. Goldfinger, M. D. (1990). Random sequence stimulation of the G1 hair afferent unit. Somatosensory Motor Research, 7, 19–45.

    PubMed  CAS  Google Scholar 

  25. Goldfinger, M. D. (2005). Highly efficient propagation of random impulse trains across unmyelinated axonal branch points: Modifications by periaxonal K+ accumulation and sodium channel kinetics. In Reeke GN, Poznanski RR, Lindsay KA, Rosenberg JR, Sporns O (eds.), Modeling in the Neurosciences, 2nd ed. (p. 479–530) Boca Raton, Florida: Taylor and Francis.

    Google Scholar 

  26. Grill, W. M., & McIntyre, C. C. (2001). Extracellular excitation of central neurons: Implications for the mechanism of deep brain stimulation. Thalamus & Related Systems, 1, 269–277.

    Article  Google Scholar 

  27. Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport, 15(7), 1137–1140.

    PubMed  Article  Google Scholar 

  28. Grossman, Y., Parnas, I., & Spira, M. E. (1979). Differential conduction block in branches of a bifurcating axon. Journal of Physiology (London), 295, 283–305.

    CAS  Google Scholar 

  29. Gustafsson, B., & Jankowska, E. (1976). Direct and indirect activation of nerve cells by electrical pulses applied extracellularly. Journal of Physiology, 258, 33–61.

    PubMed  CAS  Google Scholar 

  30. Hanajima, R., Ashby, P., Lozano, A. M., Lang, A. E., & Chen, R. (2004). Single pulse stimulation of the human subthalamic nucleus facilitates the motor cortex at short intervals. Journal of Neurophysiology, 92, 1937–1943.

    PubMed  Article  Google Scholar 

  31. Haslinger, B., Kalteis, K., Boecker, H., Alesch, F., & Ceballos-Baumann, A. O. (2005). Frequency-correlated decreases of motor cortex activity associated with subthalamic nucleus stimulation in Parkinson’s disease. NeuroImage, 28, 598–606.

    PubMed  Article  Google Scholar 

  32. Hess, A., & Young, J. Z. (1949). Correlation of internodal length and fibre diameter in the central nervous system. Nature, 164, 490–491.

    Google Scholar 

  33. Hildebrand, C., Remahl, S., Persson, H., & Bjartmar, C. (1993). Myelinated nerve fibres in the CNS. Progress in Neurobiology, 40, 319–384.

    PubMed  Article  CAS  Google Scholar 

  34. Hines, M. L., & Carnevale, N. T. (2001). NEURON: A tool for neuroscientists. Neuroscientist, 7(2), 123–135.

    PubMed  CAS  Google Scholar 

  35. Hoppe, D., Chvatal, A., Kettenmann, H., Orkand, R. K., & Ransom, B. R. (1991). Characteristics of activity-dependent potassium accumulation in mammalian peripheral nerve in vitro. Brain Research, 552, 106–112.

    PubMed  Article  CAS  Google Scholar 

  36. Hursch, J. B. (1939). Conduction velocity and diameter of nerve fibers. American Journal of Physiology, 127, 131–139.

    Google Scholar 

  37. Jankowska, E., Padel, Y., & Tanaka, R. (1975). The mode of activation of pyramidal tract cells by intracortical stimuli. Journal of Physiology, 249, 617–636.

    PubMed  CAS  Google Scholar 

  38. Jech, R., Urgosik, D., Tintera, J., Nebuzelsky, A., Krasensky, J., Liscak, R., et al. (2001). Functional magnetic resonance imaging during deep brain stimulation: A pilot study in four patients with Parkinson’s disease. Movement Disorders, 16(4), 1126–1132.

    PubMed  Article  CAS  Google Scholar 

  39. Joyner, R. W., Westerfield, M., & Moore, J. W. (1980). Effects of cellular geometry on current flow during a propagated action potential. Biophysical Journal, 31(2), 183–194.

    PubMed  CAS  Article  Google Scholar 

  40. Kakei, S., N. A., J., & Shinoda, Y. (2001). Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex. Journal of Comparative Neurology, 437(2), 170–185.

    PubMed  Article  CAS  Google Scholar 

  41. Khattab, F. I. (1968). Branching of the nodal axon in the cerebral cortex of mice. Brain Research, 9(1), 149–151.

    PubMed  Article  CAS  Google Scholar 

  42. Kitai, S. T., & Deniau, J. M. (1981). Cortical inputs to the subthalamus: Intracellular analysis. Brain Research, 214(2), 411–415.

    PubMed  Article  CAS  Google Scholar 

  43. Kultas-Ilinsky, K., Sivan-Loukianova, E., & Ilinsky, L. A. (2003). Reevaluation of the primary motor cortex connections with the thalamus in primates. Journal of Comparative Neurology, 457(2), 133–158.

    PubMed  Article  Google Scholar 

  44. Levesque, M., & Parent, A. (2005). The striatofugal fiber system in primates: A reevaluation of its organization based on single-axon tracing studies. Proceedings of the National Academy of Sciences, 102, 11888–11893.

    Article  CAS  Google Scholar 

  45. Lieberman, A. R., Webster, K. E., & Spacek, J. (1972). Multiple myelinated branches from nodes of Ranvier in the central nervous system. Brain Research, 44(2), 652–655.

    PubMed  Article  CAS  Google Scholar 

  46. Manor, Y., Koch, C., & Segev, I. (1991). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60(6), 1434–1437.

    Google Scholar 

  47. McCreery, D. B., & Agnew, W. F. (1983). Changes in extracellular potassium and calcium concentration and neural activity during prolonged electrical stimulation of the cat cerebral cortex at defined charge densities. Experimental Neurology, 79, 371–396.

    PubMed  Article  CAS  Google Scholar 

  48. McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87, 995–1006.

    PubMed  Google Scholar 

  49. McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.

    PubMed  Article  Google Scholar 

  50. Meeks, J. P., Jiang, X., & Mennerick, S. (2005). Action potential fidelity during normal and epileptiform activity in paired soma-axon recordings from rat hippocampus. Journal of Physiology, 566(2), 425–441.

    PubMed  Article  CAS  Google Scholar 

  51. Montgomery, E. B. (2006). Effects of GPi stimulation on human thalamic neuronal activity. Clinical Neurophysiology, 117(12), 2691–2702.

    PubMed  Article  Google Scholar 

  52. Mulloney, B., & Selverston, A. (1972). Antidromic action potentials fail to demonstrate known interactions between neurons. Science, 177, 69–72.

    PubMed  Article  CAS  Google Scholar 

  53. Parent, M., & Parent, A. (2002). Axon collateralization in primate basal ganglia and related thalamic nuclei. Thalamus & Related Systems, 2, 71–86.

    Article  Google Scholar 

  54. Parent, M., & Parent, A. (2004). The pallidofugal motor fiber system in primates. Parkinsonism & Related Disorders, 10, 203–211.

    Article  Google Scholar 

  55. Parent, M., Levesque, M., & Parent, A. (1999). The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem. Journal of Chemical Neuroanatomy, 16, 153–165.

    PubMed  Article  CAS  Google Scholar 

  56. Parnas, I. (1972). Differential block at high frequency at branches of a single axon innervating two muscles. Journal of Neurophysiology, 35, 903–914.

    PubMed  CAS  Google Scholar 

  57. Parnas, I., & Segev, I. (1974). A mathematical model for conduction of action potentials along bifurcating axons. Journal of Physiology, 295, 323–343.

    Google Scholar 

  58. Perlmutter, J. S., Mink, J. W., Bastian, A. J., Zackowski, K., Hershey, T., Miyawaki. E., et al. (2002). Blood flow responses to deep brain stimulation of thalamus. Neurology, 58, 1388–1394.

    PubMed  CAS  Google Scholar 

  59. Pittman, Q. J. (1983). Increases in antidromic latency of neurohypophyseal neurons during sustained activation. Neuroscience Letter, 37, 239–243.

    Article  CAS  Google Scholar 

  60. Ranck, J. B. Jr. (1975). Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Research, 98, 417–440.

    Article  Google Scholar 

  61. Rattay, F., & Aberham, M. (1993). Modeling axon membranes for functional electrical stimulation. IEEE Transactions on Biomedical Engieering, 40, 1201–1209.

    PubMed  Article  CAS  Google Scholar 

  62. Rubinstein, J. T. (1993). Axon termination conditions for electrical stimulation. IEEE Transactions on Biomedical Engineering, 40, 654–663.

    PubMed  Article  CAS  Google Scholar 

  63. Saito, K. (1979). Branchings at the central node of Ranvier, observed in the anterior horn and Clarke’s nucleus of the cat. An electron microscopic study. Neuroscience, 4(3), 391–399.

    PubMed  Article  CAS  Google Scholar 

  64. Sato, F., Lavallee, P., Levesque, M., & Parent, A. (2000a) Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. Journal of Comparative Neurology, 417, 17–31.

    PubMed  Article  CAS  Google Scholar 

  65. Sato, F., Parent, M., Levesque, M., & Parent, A. (2000b) Axonal branching pattern of neurons of the subthalamic nucleus in primates. Journal of Comparative Neurology, 424, 142–152.

    PubMed  Article  CAS  Google Scholar 

  66. Shefi, O., Herl, A., Chklovskii, D. B., Ben-Jacob, E., & Ayali, A. (2004). Biophysical constraints on neuronal branching. Neurocomputing, 58–60, 487–495.

    Article  Google Scholar 

  67. Spacek, J. (2000). Node of Ranvier. Atlas of Ultrastructural Neurocytology. Available at: http://synapses.mcg.edu/atlas/2_3_1_5.stm. Accessed on July 15, 2005.

  68. Starr, P. A., Vitek, J. L., & Bakay, R. A. E. (1998). Deep brain stimulation for movement disorders. Neurosurgery Clinics of North America, 9, 381–402.

    PubMed  CAS  Google Scholar 

  69. Tauc, L., & Hughes, G. M. (1964). Modes of initiation and propagation of spikes in the branching axons of molluscan central nervous system. Journal of General Physiology, 46, 533–549.

    Article  Google Scholar 

  70. Tolias, A. S., Sultan, F., Augath, M., Oeltermann, A., Tehovnik, E. J., Schiller, P. H., et al. (2005). Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron, 48, 901–911.

    PubMed  Article  CAS  Google Scholar 

  71. Trost, M., Su, S., Su, P., Yen, R. F., Tseng, H. M., Barnes, A., et al. (2006). Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. NeuroImage, 31(1), 301–307.

    PubMed  Article  Google Scholar 

  72. Waxman, S. G., Kocsis, J. D., & Stys, P. K. (1995). The Axon. New York: Oxford University Press.

  73. Welter, M. L., Houeto, J. L., Bonnet, A. M., Bejjani, P. B., Mesnage, V., Dormont, D., et al. (2004). Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Archives of Neurology, 61, 89–96.

    PubMed  Article  Google Scholar 

  74. Westerfield, M., Joyner, R. W., & Moore, J. W. (1978). Temperature-sensitive conduction failure at axon branch points. Journal of Neurophysiology, 41, 1–8.

    PubMed  CAS  Google Scholar 

  75. Wu, Y. R., Levy, R., Ashby, P., Tasker, R. R., & Dostrovsky, J. O. (2001). Does stimulation of the GPi control dyskinesia by activating inhibitory axons? Movement Disordorders, 16, 208–216.

    Article  CAS  Google Scholar 

  76. Zhou, L., & Chiu, S. Y. (2001). Computer model for action potential propagation through branch point in myelinated nerves. Journal of Neurophysiology, 85(1), 197–210.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant R01 NS40894 from the National Institutes of Health. The authors thank Dr. Alan Dorval for critically reading the original manuscript before submission.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Warren M. Grill.

Additional information

This work was supported by grant R01 NS40894 from the National Institutes of Health.

Action Editor: David Terman

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grill, W.M., Cantrell, M.B. & Robertson, M.S. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation. J Comput Neurosci 24, 81–93 (2008). https://doi.org/10.1007/s10827-007-0043-9

Download citation

Keywords

  • Electrical stimulation
  • Neural model
  • Propagation block