Skip to main content
Log in

Synchronous and asynchronous bursting states: role of intrinsic neural dynamics

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Brain signals such as local field potentials often display gamma-band oscillations (30–70 Hz) in a variety of cognitive tasks. These oscillatory activities possibly reflect synchronization of cell assemblies that are engaged in a cognitive function. A type of pyramidal neurons, i.e., chattering neurons, show fast rhythmic bursting (FRB) in the gamma frequency range, and may play an active role in generating the gamma-band oscillations in the cerebral cortex. Our previous phase response analyses have revealed that the synchronization between the coupled bursting neurons significantly depends on the bursting mode that is defined as the number of spikes in each burst. Namely, a network of neurons bursting through a Ca2+-dependent mechanism exhibited sharp transitions between synchronous and asynchronous firing states when the neurons exchanged the bursting mode between singlet, doublet and so on. However, whether a broad class of bursting neuron models commonly show such a network behavior remains unclear. Here, we analyze the mechanism underlying this network behavior using a mathematically tractable neuron model. Then we extend our results to a multi-compartment version of the NaP current-based neuron model and prove a similar tight relationship between the bursting mode changes and the network state changes in this model. Thus, the synchronization behavior couples tightly to the bursting mode in a wide class of networks of bursting neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoyagi, T., Kang, Y., Terada, N., Kaneko, T., & Fukai, T. (2002). The role of Ca2+-dependent cationic current in generating gamma-frequency rhythmic bursts: Theoretical study. Neuroscience, 115(1), 127–1138.

    Google Scholar 

  • Aoyagi, T., Takekawa, T., & Fukai, T. (2003). Gamma rhythmic bursts: Coherence control in networks of cortical pyramidal neurons. Neural Computation, 15, 1035–1061.

    PubMed  Google Scholar 

  • Booth, V., & Bose, A. (2002). Burst synchrony patterns in hippocampal pyramidal cell model netowkrks. Network: Computation in Neural Systems, 13, 157–177.

    Google Scholar 

  • Brumberg, J. C., Nowak, L. G., & McCormick, D. A. (2000). Ionic mechanisms underlynig repetitive high-frequency burst firing in supragranular corticalneurons. Journal of Neuroscience, 20, 4829–4843.

    PubMed  CAS  Google Scholar 

  • Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.

    Article  PubMed  CAS  Google Scholar 

  • Cardin, J. A., Palmer, L. A., & Contreras, D. (2005). Stimulus-dependent gamma (30–50 Hz) oscillations in simple and complex fast rhythmic bursting cells in primary visual cortex. Journal of Neuroscience, 25, 5339–5350.

    Article  PubMed  CAS  Google Scholar 

  • Crook, S. M., Ermentrout, G. B., & Bower, J. M. (1998). Dendritic and synaptic effects in systems of coupled cortical oscillators. Journal of Computational Neuroscience, 5, 515–329.

    Article  Google Scholar 

  • Crook, S. M., Ermentrout, G. B., & Vanier, M. C. (1997). The role of axonal delay in the synchronization of networks of coupled cortical oscillators. Journal of Computational Neuroscience, 4, 161–172.

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, M. O., Whittington, M. A., Bibbig, A., Roopun, A., LeBeau, F. E. N., Vogt, A., et al. (2004). A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proceedings of the National Academy of Sciences of the United States of America, 101, 7152–7157.

    Article  PubMed  CAS  Google Scholar 

  • Doiron, B., Laing, C., Longtin, A., & Maler, L. (2002). Ghostbursting: A novel neuronal burst mechanism. Journal of Computational Neuroscience, 12, 5–25.

    Article  PubMed  Google Scholar 

  • Dormand, J., & Prince, P. (1980). A family of embedded runge-kutta formulae. Journal of Computational and Applied Mathematics, 6, 19–26.

    Article  Google Scholar 

  • Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979– 1001.

    PubMed  CAS  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus in a chain of weakly coupled oscillators. SIAM journal on Mathematical Analysis, 15, 215–237.

    Article  Google Scholar 

  • Goldberg, J. A., Deister, C. A., & Wilson, C. J. (2007). Response properties and synchronization of rhythmically firing dendritic neurons. Journal of Neurophysiology, 97, 208–219.

    Google Scholar 

  • Gray, C. M., & McCormick, D. A. (1996). Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science, 274, 109–113.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C. M., & Prisco, G. V. D. (1997). Stimulus-dependent neuronal oscillations and local synchronization in striate cortex of the alert cat. Journal of Neuroscience, 17, 3239– 3253.

    PubMed  CAS  Google Scholar 

  • Gray, C. M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visua-cortex. Proceedings of the National Academy of Sciences of the United States of America, 86, 1698–1702.

    Article  PubMed  CAS  Google Scholar 

  • Gutkin, B. S., Ermentrout, G. B., & Reyes, A. D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.

    Article  PubMed  Google Scholar 

  • Haj-Dahmane, S., & Andrade, R. (1997). Calcium-activated cation nonselective currenct contributes to the fast afterdepolarization in rat prefrontal cortex neurons. Journal of Neurophysiology, 78, 1983–1989.

    PubMed  CAS  Google Scholar 

  • Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural network. Neural Computation, 7, 307–337.

    PubMed  CAS  Google Scholar 

  • Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer-Verlag.

    Google Scholar 

  • Izhikevich, E. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 10, 1171–1266.

    Article  Google Scholar 

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.

    Article  Google Scholar 

  • Kang, Y., & Kayano, F. (1994). Electrophysiological and morphological characteristics of layer VI pyramidal cells in the cat motor cortex. Journal of Neurophysiology, 72, 578–91.

    PubMed  CAS  Google Scholar 

  • Kang, Y., Okada, T., & Ohmori, H. (1998) A phenytoin-sensitive cationic current participates in generating afterdepolarization adn burst afterdischarge in rat neocortical pyramidal cells. European Journal of Neuroscience, 10, 1363–1375.

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer-Verlag.

    Google Scholar 

  • Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., et al. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.

    Article  PubMed  Google Scholar 

  • Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons. Journal of Computational Neuroscience, 1, 39–60.

    Article  PubMed  CAS  Google Scholar 

  • Reyes, A. D., & Fetz, E. E. (1993). Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. Journal of Neurophysiology, 69, 1661–1672.

    PubMed  CAS  Google Scholar 

  • Shampine, L. F. (1986). Some practical Runge–Kutta formulas. Mathematics of Computation, 46, 135–150.

    Article  Google Scholar 

  • Singer, W. (1999). Neuronal synchrony a versatile code for the definition of relations? Neuron, 24, 49–65.

    Article  PubMed  CAS  Google Scholar 

  • Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137, 1087–1106.

    Article  PubMed  CAS  Google Scholar 

  • Steriade, M., Timofeev, I., Dürmüller, N., & Grenier, F. (1998). Dynamic properties of corticothalamic neurons and local cortical interneurons generation fast rhythmic (30–40 Hz) spike bursts. Journal of Neurophysiology, 79, 483–490.

    PubMed  CAS  Google Scholar 

  • Takekawa, T., Aoyagi, T., & Fukai, T. (2004). Influences of synaptic location on the synchronization of rhythmic bursting neurons. Network: Computation in Neural Systems, 15, 1–12.

    Article  CAS  Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Pernier, J. (1997). Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17, 722–734.

    PubMed  CAS  Google Scholar 

  • Traub, R. D., Buhl, E. H., Gloveli, T., & Whittington, M. A. (2003). Fast rhythmic bursting can be induced in layer 2/3 corical neurons by enhancing persisten Na+ conductance or by blocking BK channels. Journal of Neurophysiology, 89, 909–921.

    Article  PubMed  CAS  Google Scholar 

  • Tsubo, Y., Takada, M., & Fukai, T. (2005). Layer-specific synchronization properties and their cholinergic modulations of rat motor cortex pyramidal neurons. In Abstract of Annual Meeting of the Society for Neuroscience, Washington DC (p 971.13).

  • van Vreeswijk, C., Abbott, L. F., & Ermentrout, G. B. (1994). When inhibition not excitation synchronizes neuronal firing. Journal of Computational Neuroscience, 1, 313–321.

    Article  PubMed  Google Scholar 

  • Wang, X. J. (1999). Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons. Neuroscience, 89, 347–362.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, G. F., Richardson, F. C., Fisher, T. E., Olivera, B. M., & Kaczmarek, L. K. (1996). Identification and characterization of a Ca2+-sensitive nonspecific cation channel underlying prolonged repetitive firing in aplysia neurons. Journal of Neuroscience, 16, 3661–3671.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Takekawa.

Additional information

Action Editor: Xiao-Jing Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takekawa, T., Aoyagi, T. & Fukai, T. Synchronous and asynchronous bursting states: role of intrinsic neural dynamics. J Comput Neurosci 23, 189–200 (2007). https://doi.org/10.1007/s10827-007-0027-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-007-0027-9

Keywords

Navigation