Skip to main content

Advertisement

Log in

The influence of cortical feature maps on the encoding of the orientation of a short line

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The inhomogeneous distribution of the receptive fields of cortical neurons influences the cortical representation of the orientation of short lines seen in visual images. We construct a model of the response of populations of neurons in the human primary visual cortex by combining realistic response properties of individual neurons and cortical maps of orientation and location preferences. The encoding error, which characterizes the difference between the parameters of a visual stimulus and their cortical representation, is calculated using Fisher information as the square root of the variance of a statistically efficient estimator. The error of encoding orientation varies considerably with the location and orientation of the short line stimulus as modulated by the underlying orientation preference map. The average encoding error depends only weakly on the structure of the orientation preference map and is much smaller than the human error of estimating orientation measured psychophysically. From this comparison we conclude that the actual mechanism of orientation perception does not make efficient use of all the information available in the neuronal responses and that it is the decoding of visual information from neuronal responses that limits psychophysical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blasdel G, Campbell D (2001) Functional retinotopy of monkey visual cortex. J. Neurosci.: The Official J. Soc. Neurosci. 21(20): 8286–8301.

    CAS  Google Scholar 

  • Blasdel G (1992) Orientation selectivity, preference, and continuity in monkey striate cortex. J. Neurosci. : The Official J. Soc. Neurosci. 12(8): 3139–3161.

    CAS  Google Scholar 

  • Bosking WH, Crowley JC, Fitzpatrick D (2002) Spatial coding of position and orientation in primary visual cortex. Nature Neurosci. 5(9): 874–882.

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, Nadal JP (1998) Mutual information, fisher information, and population coding. Neurosci. Comput. 10(7): 1731–1757.

    Article  CAS  PubMed  Google Scholar 

  • Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Ann. Rev. Neurosci. 21: 47–74.

    Article  CAS  PubMed  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of Information Theory. Wiley, New York, p. 542.

    Google Scholar 

  • Das A, Gilbert CD (1997) Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature 387(6633): 594–598.

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis GC, Freeman RD, Ohzawa I (1994) Length and width tuning of neurons in the cat’s primary visual cortex. J. Neurophysiol. 71(1): 347–374.

    CAS  PubMed  Google Scholar 

  • DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD (1999) Functional micro-organization of primary visual cortex: Receptive field analysis of nearby neurons. J. Neurosci. : The Official J. Soc. Neurosci. 19(10): 4046–4064.

    CAS  Google Scholar 

  • Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA (2003) Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J. Vis. 3(10): 586–598.

    Article  PubMed  Google Scholar 

  • Duncan RO, Boynton GM (2003) Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38(4): 659–671.

    Article  CAS  PubMed  Google Scholar 

  • Eurich CW, Wilke SD (2000) Multidimensional encoding strategy of spiking neurons. Neural Comput. 12(7): 1519–1529.

    Article  CAS  PubMed  Google Scholar 

  • Gershon ED, Wiener MC, Lathamut PE, Richmond BJ (1998) Coding strategies in monkey V1 and inferior temporal cortices. J. Neur. 79(3): 1135–1144.

    CAS  PubMed  Google Scholar 

  • Haynes JD, Rees G (2005) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neurosci. 8(5): 686–691.

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Ferrier lecture. functional architecture of macaque monkey visual cortex. Proc. Royal Soc. of London, Series B. Biolog. Sci. 198(1130): 1–59.

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1974) Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 158(3): 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Itti L, Koch C, Braun J (1999) A quantitative model relating visual neuronal activity to psychophysical thresholds. Neurocomputing 26–27: 743–748.

    Article  Google Scholar 

  • Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nature Neurosci. 8(5): 679–685.

    Article  CAS  PubMed  Google Scholar 

  • Kapadia MK, Westheimer G, Gilbert CD (2000) Spatial distribution of contextual interactions in primary visual cortex and in visual perception. J. Neurophysiol. 84(4): 2048–2062.

    CAS  PubMed  Google Scholar 

  • Kjaer TW, Gawne TJ, Hertz JA, Richmond BJ (1997) Insensitivity of V1 complex cell responses to small shifts in the retinal image of complex patterns. J. Neurophysiol. 78(6): 3187–3197.

    CAS  PubMed  Google Scholar 

  • Lehky SR, Sejnowski TJ, Desimone R (2005) Selectivity and sparseness in the responses of striate complex cells. Vis. Res. 45(1): 57–73.

    Article  PubMed  Google Scholar 

  • Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cerebral Cortex 13(1): 15–24.

    Article  PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain; J. Neurol. 120(Pt 4): 701–722.

    PubMed  Google Scholar 

  • Ott D, Seidman SH, Leigh RJ (1992) The stability of human eye orientation during visual fixation. Neur. Lett. 17,142(2): 183–186.

    Article  Google Scholar 

  • Paradiso MA (1988) A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biolog. Cybern. 58(1): 35–49.

    Article  CAS  PubMed  Google Scholar 

  • Paradiso MA, Carney T (1988) Orientation discrimination as a function of stimulus eccentricity and size: Nasal/temporal retinal asymmetry. Vis. Res. 28(8): 867–874.

    Article  CAS  PubMed  Google Scholar 

  • Pouget A, Dayan P, Zemel RS (2003) Inference and computation with population codes. Ann. Rev. Neurosci. 26: 381–410.

    Article  CAS  PubMed  Google Scholar 

  • Ringach DL, Shapley RM, Hawken MJ (2002) Orientation selectivity in macaque V1: Diversity and laminar dependence. The Journal Neurosci.: The Official J. Soc. Neurosci. 22(13): 5639–5651.

    CAS  Google Scholar 

  • Sceniak MP, Hawken MJ, Shapley R (2001) Visual spatial characterization of macaque V1 neurons. J. Neurophys. 85(5): 1873–1887.

    CAS  PubMed  Google Scholar 

  • Series P, Latham PE, Pouget A (2004) Tuning curve sharpening for orientation selectivity: Coding efficiency and the impact of correlations. Nature Neurosci. 7(10): 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  • Seung HS, Sompolinsky H (1993) Simple models for reading neuronal population codes. Proc. Nat. Acad. Sci. USA 90(22): 10749–10753.

    CAS  PubMed  Google Scholar 

  • Shadlen MN, Britten KH, Newsome WT, Movshon JA (1996) A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. : The Official J. Soc. Neurosci. 16(4): 1486–1510.

    CAS  Google Scholar 

  • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci.: The Official J. Soc. Neurosci. 13(1): 334–350.

    CAS  Google Scholar 

  • Spitzer H, Hochstein S (1988) Complex-cell receptive field models. Progr. Neurobiol. 31(4): 285–309.

    Article  CAS  PubMed  Google Scholar 

  • Stevens CF (2001) An evolutionary scaling law for the primate visual system and its basis in cortical function. Nature 411(6834): 193–195.

    Article  CAS  PubMed  Google Scholar 

  • Swindale NV (1998) Orientation tuning curves: Empirical description and estimation of parameters. Biolog. Cybern. 78(1): 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Swindale NV, Shoham D, Grinvald A, Bonhoeffer T, Hubener M (2000) Visual cortex maps are optimized for uniform coverage. Nature Neurosci. 3(8): 822–826.

    Article  CAS  PubMed  Google Scholar 

  • Tolhurst DJ, Ling L (1988) Magnification factors and the organization of the human striate cortex. Human Neurobiol. 6(4): 247–254.

    CAS  PubMed  Google Scholar 

  • Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23(8): 775–785.

    Article  CAS  PubMed  Google Scholar 

  • Touryan J, Felsen G, Dan Y (2005) Spatial structure of complex cell receptive fields measured with natural images. Neuron 45(5): 781–791.

    Article  CAS  PubMed  Google Scholar 

  • Van Essen DC, Newsome WT, Maunsell JH (1984) The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vis. Res. 24(5): 429–448.

    Article  PubMed  Google Scholar 

  • Vandenbussche E, Vogels R, Orban GA (1986) Human orientation discrimination: Changes with eccentricity in normal and amblyopic vision. Invest. Ophthalmol. Vis. Sci. 27(2): 237–245.

    CAS  Google Scholar 

  • Vanduffel W, Tootell RB, Schoups AA, Orban GA (2002) The organization of orientation selectivity throughout macaque visual cortex. Cerebral Cortex (New York, NY, 1991) 12(6): 647–662.

    Article  PubMed  Google Scholar 

  • Westheimer G (2003) The distribution of preferred orientations in the peripheral visual field. Vis. Res. 43(1): 53–57.

    Article  PubMed  Google Scholar 

  • Wiener MC, Richmond BJ (2002) Model based decoding of spike trains. Bio. Syst. 67(1–3): 295–300.

    PubMed  Google Scholar 

  • Wiener MC, Oram MW, Liu Z, Richmond BJ (2001) Consistency of encoding in monkey visual cortex. J. Neurosci.: The Official J. Soc. Neurosci. 21(20): 8210–8221.

    CAS  Google Scholar 

  • Wilke SD, Eurich CW (2002) Representational accuracy of stochastic neural populations. Neural Comp. 14(1): 155–189.

    Article  PubMed  Google Scholar 

  • Zanker JM, Braitenberg V (1996) Psychophysical mapping of orientation sensitivity in the human cortex. In A Aertsen, V Braitenberg, eds. Brain Theory: Biological Basis and Computational Principles. Elsevier, Amsterdam, New York, p. 1

    Google Scholar 

  • Zhang K, Sejnowski TJ (1999) Neuronal tuning: To sharpen or broaden? Neural Comput. 11(1): 75–84.

    Article  CAS  PubMed  Google Scholar 

  • Zohary E (1992) Population coding of visual stimuli by cortical neurons tuned to more than one dimension. Biolog. Cybern. 66(3): 265–272.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Glaser.

Additional information

Action Editor: Terrence Sejnowski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shokhirev, K.N., Kumar, T. & Glaser, D.A. The influence of cortical feature maps on the encoding of the orientation of a short line. J Comput Neurosci 20, 285–297 (2006). https://doi.org/10.1007/s10827-006-6485-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-6485-7

Keywords

Navigation