Skip to main content
Log in

A Functional Point-Neuron Model Simulating Cochlear Nucleus Ideal Onset Responses

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Cochlear nucleus neurons revealing ideal onset (OI)-type peri-stimulus time histograms (PSTH) encode temporal features of acoustic stimuli with very high precision. These neurons are therefore assumed to be involved in the recognition of natural sounds with temporally varying envelopes such as speech. A functional point-neuron model is presented here for the simulation of OI-unit responses found in cochlear nucleus octopus cells. The model assumes a biphasic response of the membrane potential to a current impulse, the membrane impulse response, and a dynamic spike-blocking mechanism. The predicted responses to pure tones at low and high frequencies, injected current steps, and amplitude modulated tones are compared to recordings from the literature. The model accounts for the main response properties in the data using the same small set of parameters for all experimental conditions. The assumed biphasic shape of the membrane impulse response, reflecting a higher sensitivity to stimulus transients and fast changes relative to sustained stimulus portions, allows for a description of OI-unit responses that cannot be accounted for by a coincidence detector model with an integrate-to-threshold dynamic. The presented functional model may be useful as a processing module in more complex models of auditory signal processing and perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bal R, Oertel D (2001) Potassium currents in octopus cells of the mammalian cochlear nucleus. J. Neurophysiol. 86: 2299–2311.

    PubMed  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis: The Perceptual Organization of Sound. MIT Press, Cambridge.

    Google Scholar 

  • Cai Y, Walsh EJ, McGee J (1997) Mechanisms of onset responses in octopus cells of the cochlear nucleus: Implications of a model. J. Neurophysiol. 78: 872–883.

    PubMed  Google Scholar 

  • Cai Y, McGee J, Walsh EJ (2000) Contributions of ion conductances to the onset responses of octopus cells in the ventral cochlear nucleus: Simulation results. J. Neurophysiol. 83: 301–314.

    PubMed  Google Scholar 

  • Cai Y, McGee J, Walsh EJ (2001) Processing of pitch information in complex stimuli by a model of octopus cells in the cochlear nucleus. In: S Greenberg, M Slaney, eds., Computational Models of Auditory Function. IOS Press, Amsterdam.

  • Ferragamo MJ, Oertel, D (2002) Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization. J. Neurophysiol. 87: 2262–2270.

    PubMed  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear. Res. 44: 99–122.

    Article  Google Scholar 

  • Gardner SM, Trussell LO, Oertel D (1999) Time course and permeation of synaptic AMPA receptors in cochlear nucleus neurons correlate with input. J. Neurosci. 19: 8721–8729.

    PubMed  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975) Single unit activity in the posteroventral cochlear nucleus of the cat. J. Comp. Neurol. 162: 247–268.

    Article  PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1969) Responses of binaural neurons of dog superior olivary complex to dichotic stimuli: Some physiological mechanisms of sound localization. J. Neurophysiol. 32: 613–636.

    PubMed  Google Scholar 

  • Golding NL, Robertson D, Oertel D (1995) Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. J. Neurosci. 15: 3138–3153.

    PubMed  Google Scholar 

  • Golding NL, Ferragamo MJ, Oertel D (1999) Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus. J. Neurosci. 19: 2897–2905.

    PubMed  Google Scholar 

  • Kalluri S, Delgutte B (2003a) Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. J. Comp. Neurosci. 14: 71–90.

    Google Scholar 

  • Kalluri S, Delgutte B (2003b) Mathematical models of cochlear nucleus onset neurons: II. Model with dynamic spike-blocking state. J. Comp. Neurosci. 14: 91–110.

    Google Scholar 

  • Kane EC (1973) Octopus cells in the cochlear nuclei of the cat: Heterotypic synapses upon homeotypic neurons. Int. J. Neurosci. 5: 251–279.

    PubMed  Google Scholar 

  • Kipke DR, Levy KL (1997) Sensitivity of the cochlear nucleus octopus cell to synaptic and membrane properties. J. Acoust. Soc. Am. 102: 403–412.

    Article  Google Scholar 

  • Levy KL, Kipke DR (1997) A computational model of the cochlear nucleus octopus cell. J. Acoust. Soc. Am. 102: 391–402.

    Article  Google Scholar 

  • Levy KL, Kipke DR (1998) Mechanisms of the cochlear nucleus octopus cell’s onset response: Synaptic effectiveness and threshold. J. Accoust. Soc. Am. 103: 1940–1950.

    Article  Google Scholar 

  • Liberman MC (1993) Central projections of auditory nerve fibers of differing spontaneous rate. II: Posteroventral and dorsal cochlear nuclei. J. Comp. Neurol. 327: 17–36.

    Google Scholar 

  • Meddis R, Hewitt MJ, Shackleton TM (1990) Implementation details of a computation model of the inner hair-cell/auditory-nerve synapse. J. Acoust. Soc. Am. 87: 1813–1816.

    Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J. Acoust. Soc. Am. 79: 702–711.

    PubMed  Google Scholar 

  • Meddis R (1988) Simulation of auditory-neural transduction: Further studies. J. Acoust. Soc. Am. 83: 1056–1063.

    PubMed  Google Scholar 

  • Oertel D, Bal R, Gardner SM, Smith PH, Joris PX (2000) Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. PNAS. National Academy of Sciences Colloquium on Auditory Neuroscience: Development, Transduction and Integration .

  • Patterson RD, Nimmo-Smith I, Holdsworth J, Rice P (1988) An efficient auditory filterbank based on the gammatone function. APU report 2341, Applied Psychology Unit, Cambridge.

  • Rhode WS, Smith PH (1986) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J. Neurophysiol. 56: 261– 286.

    PubMed  Google Scholar 

  • Rhode WS (1994) Temporal coding of 200% amplitude modulated signals in the ventral cochlear nucleus of cat. Hear. Res. 77: 43–68.

    Article  PubMed  Google Scholar 

  • Romand R (1978) Survey of intracellular recording in the cochlear nucleus of the cat. Brain Res. 148: 43–65.

    Article  PubMed  Google Scholar 

  • Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J. Comp. Neurol. 282: 595–616.

    Article  PubMed  Google Scholar 

  • Stevens KN (1995) Applying phonetic knowledge to lexical access. In: Fourth European Conference on Speech Communication and Technology, Vol. 1. Madrid, Spain.

  • Tuckwell HC (1988) Introduction to Theoretical Neurobiology, Vol. 1. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Winter IM, Palmer AR (1995) Level dependence of cochlear nucleus onset unit responses and facilitation by second tones or broadband noise. J. Neurophysiol. 73: 141–159.

    PubMed  Google Scholar 

  • Young E, Robert JM, Shofner W (1988) Regularity and latency of units in ventral cochlear nucleus: Implications for unit classification and generation of response properties. J. Neurophysiol. 60: 1–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Dau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dicke, U., Dau, T. A Functional Point-Neuron Model Simulating Cochlear Nucleus Ideal Onset Responses. J Comput Neurosci 19, 239–253 (2005). https://doi.org/10.1007/s10827-005-1847-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-005-1847-0

Keywords

Navigation