Skip to main content
Log in

Psychometric Evaluation of the Big Five Questionnaire for Children (BFQ-C): A Rasch Model Approach

  • Original Paper
  • Published:
Journal of Child and Family Studies Aims and scope Submit manuscript

Abstract

The Big Five Questionnaire for Children, (BFQ-C) is an instrument for personality assessment in children and adolescents widely used worldwide. The aim of this work was to study the psychometric properties of the instrument scores from the item response theory (IRT) perspective. We worked with a Partial Credit Rasch Model to analyze an Argentinean sample to validate the scale for its use in this population. We opted for an instrumental design, and for each factor we applied an item calibration plan consisting of different analysis: unidimensionality, classification of response categories, fit levels of items and persons, specific objectivity, and differential item functioning as regards sex. We worked with a sample of 1162 high school students aged 12–17 years. The five original subscales did not show satisfactory fit, so modifications were made to improve their properties. As a result, we could demonstrate that each subscale measures a single latent trait, meets the invariance assumption regarding the sample and the assumption of local independence, showing no sex differential item functioning (DIF). Finally, the ordinal scores were converted to an interval scale, which allows more accurate analysis and better confidence in outcomes. Our results showed that the five subscales corresponding to each factor were in line with the IRT key parameters, although we suggest further studies on both the test capacity to assess extreme scores and the relevance of using a five-response category scoring.

Highlights

  • The items of BFQ-C have adequate psychometric properties based on Rasch model.

  • The items do not show differential functioning in terms of sex.

  • The BFQ-C allows to measure the Big Five personality factors in Argentinean population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad, F. J., Olea, J., Aguado, D., Ponsoda, V., & Barrada, J. R. (2010). Deterioro de parámetros de los ítems en tests adaptativos informatizados: estudio con eCAT (Deterioration of the parameters of the items in computerized adaptive tests: study with eCAT). Psicothema, 22(2), 340–347. http://goo.gl/fAjIj6.

  • Abedalaziz, N., & Leng, C. H. (2018). The relationship between CTT and IRT approaches in analyzing item characteristics. Malaysian Online Journal of Educational Sciences, 1(1), 64–70. https://bit.ly/2Z2IgKC.

  • An, X., & Yung, Y.F. (2014). Item response theory: what it is and how you can use the IRT procedure to apply it. Cary: SAS Institute. SAS364-2014. https://bit.ly/2WzVfBJ.

  • Andrich, D. (1978). Rating formulation for ordered response categories. Psychometrika, 43(4), 561–573. https://doi.org/10.1007/bf02293814.

    Article  Google Scholar 

  • Andrich, D., Sheridan, B. & Luo, G. (2010). Rasch models for measurement: RUMM2030. Perth: RUMM Laboratory Pty Ltd.

  • Barbaranelli, C., Caprara, G. V., Rabasca, A., & Pastorelli, C. (2003). A questionnaire for measuring the Big Five in late childhood. Personality and Individual Differences, 34(4), 645–664. https://doi.org/10.1016/S0191-8869(02)00051-X.

    Article  Google Scholar 

  • Bond, T. G., & Fox, C. M. (2015). Applying the Rasch model: fundamental measurement in the human sciences (3rd ed.). New York: Routledge/Taylor & Francis Group.

  • Bore, M., Laurens, K. R., Hobbs, M. J., Green, M. J., Tzoumakis, S., Harris, F., & Carr, V. J. (2018). Item response theory analysis of the Big Five Questionnaire for Children–Short Form (BFC-SF): a self-report measure of personality in children aged 11–12 years. Journal of Personality Disorders, 1–24. https://doi.org/10.1521/pedi_2018_32_380.

  • Briggs, D. C., & Wilson, M. (2003). An introduction to multidimensional measurement using Rasch models. Journal of Applied Measurement, 4(1), 87–100. https://bit.ly/2LCIoZ7.

  • Cavanagh, R. F., & Waugh, R. F. (Eds.). (2011). Applications of rasch measurement in learning environments research (Vol. 2). Rotterdam: Springer Science & Business Media. https://doi.org/10.1007/978-94-6091-493-5.

  • Chahín-Pinzón, N. (2014). Aspectos a tener en cuenta cuando se realiza una adaptación de test entre diferentes culturas (Aspects to take into account when performing a test adaptation between different cultures). Psychología: Avances de la Disciplina, 8(2), 109–112. https://doi.org/10.21500/19002386.1225.

    Article  Google Scholar 

  • Chahín-Pinzón, N., Lorenzo-Seva, U., & Vigil-Colet, A. (2012). Características psicométricas de la adaptación colombiana del Cuestionario de Agresividad de Buss y Perry en una muestra de preadolescentes y adolescentes de Bucaramanga (Psychometric characteristics of the Colombian adaptation of the Buss and Perry Aggression Questionnaire in a sample of preadolescents and adolescents from Bucaramanga). Universitas Psychologica, 11(3), 979–988. https://bit.ly/3cEsysU https://bit.ly/3cEsysU.

    Article  Google Scholar 

  • Cupani, M., & Cortez, F. D. (2016). Análisis psicométricos del Subtest de Razonamiento Numérico utilizando el Modelo de Rasch (Psychometric analysis of the subtest of numerical reasoning using the Rasch model). Revista de psicología (Santiago), 25(2), 1–16. https://doi.org/10.5354/0719-0581.2016.44558.

    Article  Google Scholar 

  • Cupani, M., & Pautassi, R. M. (2013). Predictive contribution of personality traits in a sociocognitive model of academic performance in mathematics. Journal of Career Assessment, 21(3), 395–413. https://doi.org/10.1177/1069072712475177.

    Article  Google Scholar 

  • Cupani, M., & Ruarte, M. (2008). Propiedades psicométricas del Cuestionario de los Cinco Factores para Niños (BFQ-C) en una muestra de adolescentes argentinos (Psychometric properties of the Five-Factor Questionnaire for Children (BFQ-C) in a sample of Argentine adolescents). Estudios de Psicología, 29(3), 351–364. https://doi.org/10.1174/021093908786145421.

    Article  Google Scholar 

  • Damian, R. I., Su, R., Shanahan, M., Trautwein, U., & Roberts, B. W. (2015). Can personality traits and intelligence compensate for background disadvantage? Predicting status attainment in adulthood. Journal of Personality and Social Psychology, 109(3), 473 https://doi.org/10.1037/pspp0000024.

    Article  PubMed  Google Scholar 

  • Del Barrio, M. V., Carrasco, M. A., & Holgado, P. (2006). BFQ-NA cuestionario de los Cinco Grandes para niños y adolescentes (adaptación a la población española) [BFQ-NA questionnaire of the Big Five for children and adolescents (adaptation to the Spanish population)]. Madrid: TEA.

  • Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. New Jersey: LEA.

  • Engelhard Jr., G. (2013). Invariant measurement: using Rasch models in the social, behavioral, and health sciences. New York: Routledge.

  • Essau, C. A., Sasagawa, S., & Frick, P. J. (2006). Callous-unemotional traits in a community sample of adolescents. Assessment, 13(4), 454–469. https://doi.org/10.1177/1073191106287354.

    Article  PubMed  Google Scholar 

  • Geisinger, K. F. (1994). Cross-cultural normative assessment: translation and adaptation issues influencing the normative interpretation of assessment instruments. Psychological Assessment, 6(4), 304–312. https://doi.org/10.1037//1040-3590.6.4.304.

    Article  Google Scholar 

  • Goretti, S., Sanchéz, M. S., Borja, P. L., Rivera, G. B., & Lara, M. R. (2017). The relationship between personality disorders and substance abuse disorders. European Psychiatry, 41, S473–S474. https://doi.org/10.1016/j.eurpsy.2017.01.547.

    Article  Google Scholar 

  • Granberg-Rademacker, J. S. (2010). An algorithm for converting ordinal scale measurement data to interval/ratio scale. Educational and Psychological Measurement, 70(1), 74–90. https://doi.org/10.1177/0013164409344532.

    Article  Google Scholar 

  • Harwell, M. R., & Gatti, G. G. (2001). Rescaling ordinal data to interval data in educational research. Review of Educational Research, 71(1), 105–131. https://doi.org/10.3102/00346543071001105.

    Article  Google Scholar 

  • Holgado, F. P., Carrasco, M. Á., del Barrio, M. V., & Chacón, S. (2009). Factor analysis of the Big Five Questionnaire using polychoric correlations in children. Quality & Quantity, 43(1), 75–85. https://doi.org/10.1007/s11135-007-9085-3.

    Article  Google Scholar 

  • John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big-Five trait taxonomy: history, measurement, and conceptual issues. In O. P. John, R. W. Robins & L. A. Pervin (Eds.), Handbook of personality: theory and research (pp. 114–158). New York: Guilford Press.

  • Leung, Y.-Y., Png, M.-E., Conaghan, P., & Tennant, A. (2014). A systematic literature review on the application of Rasch analysis in musculoskeletal disease—a special interest group report of OMERACT 11. The Journal of Rheumatology, 41(1), 159–164.https://doi.org/10.3899/jrheum.130814.

    Article  PubMed  Google Scholar 

  • Maples-Keller, J. L., Williamson, R. L., Sleep, C. E., Carter, N. T., Campbell, W. K., & Miller, J. D. (2017). Using item response theory to develop a 60-item representation of the NEO PI–R using the international personality item pool: development of the IPIP–NEO–60. Journal of Personality Assessment, 1–12. https://doi.org/10.1080/00223891.2017.1381968.

  • Markos, A., & Kokkinos, C. M. (2017). Development of a short form of the Greek Big Five Questionnaire for Children (GBFQ-C-SF): validation among preadolescents. Personality and Individual Differences, 112, 12–17. https://doi.org/10.1016/j.paid.2017.02.045.

    Article  Google Scholar 

  • Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174. https://doi.org/10.1007/bf02296272.

    Article  Google Scholar 

  • Medvedev, O. N., Krägeloh, C. U., Titkova, E. A., & Siegert, R. J. (2018). Rasch analysis and ordinal-to-interval conversion tables for the depression, anxiety and stress scale. Journal of Health Psychology. https://doi.org/10.1177/1359105318755261.

  • Mitsopoulou, E., & Giovazolias, T. (2015). Personality traits, empathy and bullying behavior: a meta-analytic approach. Aggression and Violent Behavior, 21, 61–72. https://doi.org/10.1016/j.avb.2015.01.007.

    Article  Google Scholar 

  • Morizot, J. (2015). 10 The Contribution of temperament and personality traits to criminal and antisocial behavior development and desistance. In J. Morizot & L. Kazemian (eds), The development of criminal and antisocial behavior (pp. 137–165). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-08720-7.

  • Muris, P., Meesters, C., & Diederen, R. (2005). Psychometric properties of the Big Five Questionnaire for Children (BFQ-C) in a Dutch sample of young adolescents. Personality and Individual Differences, 38(8), 1757–1769. https://doi.org/10.1016/j.paid.2004.11.018.

    Article  Google Scholar 

  • Nieto, M. D., Abad, F. J., Hernández-Camacho, A., Garrido, L. E., Barrada, J. R., Aguado, D., & Olea, J. (2017). Calibrating a new item pool to adaptively assess the Big Five. Psicothema, 29(3), 390–395. https://bit.ly/2T7bJiw.

    PubMed  Google Scholar 

  • Nilsson, L. A., & Tennant, A. (2011). Past and present issues in Rasch analysis: the functional independence measure (FIM) revisited. Journal of Rehabilitation Medicine, 43(10), 884–891. https://doi.org/10.2340/16501977-0871.

    Article  Google Scholar 

  • Olivier, M., & Herve, M. (2015). The Big Five Questionnaire for Children (BFQ-C): a French validation on 8 to 14-year-old children. Personality and Individual Differences, 87, 55–58. https://doi.org/10.1016/j.paid.2015.07.030.

    Article  Google Scholar 

  • Pallant, J., & Tennant, A. (2007). An introduction to the Rasch measurement model: an example using the Hospital Anxiety and Depression Scale (HADS). British Journal of Clinical Psychology, 46, 1–18. https://doi.org/10.1348/014466506X96931.

    Article  PubMed  Google Scholar 

  • Parkitny, L., McAuley, J. H., Walton, D., Costa, L. O. P., Refshauge, K. M., Wand, B. M., Di Pietro, F., & Moseley, G. L. (2012). Rasch analysis supports the use of the depression, anxiety, and stress scales to measure mood in groups but not in individuals with chronic low back pain. Journal of Clinical Epidemiology, 65(2), 189–198. https://doi.org/10.1016/j.jclinepi.2011.05.010.

    Article  PubMed  Google Scholar 

  • Poropat, A. E. (2014). Other-rated personality and academic performance: evidence and implications. Learning and Individual Differences, 34, 24–32. https://doi.org/10.1016/j.lindif.2014.05.013.

    Article  Google Scholar 

  • Ramada-Rodilla, J. M., Serra-Pujadas, C., & Delclós-Clanchet, G. L. (2013). Adaptación cultural y validación de cuestionarios de salud: revisión y recomendaciones metodológicas (Cultural adaptation and validation of health questionnaires: review and methodological recommendations). Salud pública de México, 55, 57–66. https://doi.org/10.1590/s0036-36342013000100009.

    Article  PubMed  Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhague: Danish Institute for Educational Research.

  • Samejima, F. (1997). Graded response model. In W. J. Van Der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 85–100). New York: Springer.

  • Shea, T. L., Tennant, A., & Pallant, J. F. (2009). Rasch model analysis of the Depression, Anxiety and Stress Scales (DASS). BMC Psychiatry, 9(1). https://doi.org/10.1186/1471-244x-9-21.

  • Smith, E. V. (2002). Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. Journal of Applied Measurement, 3(2), 205–231.

    PubMed  Google Scholar 

  • Sperber, A. D., Devellis, R. F., & Boehlecke, B. (1994). Cross-cultural translation. Journal of Cross-Cultural Psychology, 25(4), 501–524. https://doi.org/10.1177/0022022194254006.

    Article  Google Scholar 

  • Tennant, A., & Conaghan, P. G. (2007). The Rasch measurement model in rheumatology: what is it and why use it? When should it be applied and what should one look for in a Rasch paper? Arthritis Rheum, 57(8), 1358–1362. https://doi.org/10.1002/art.23108.

    Article  PubMed  Google Scholar 

  • Tennant, A., McKenna, S. P., & Hagell, P. (2004). Application of Rasch analysis in the development and application of quality of life instruments. Value in Health, 7, S22–S26. https://doi.org/10.1111/j.1524-4733.2004.7s106.x.

    Article  PubMed  Google Scholar 

  • Tennant, A., & Pallant, J. F. (2006). Unidimensionality matters! (A tale of two Smiths?). Rasch Measurement Transactions, 20, 1048–1051.

    Google Scholar 

  • Tennant, A., & Pallant, J. F. (2012). The root mean square error of approximation (RMSEA) as a supplementary statistic to determine fit to the Rasch model with large sample sizes. Rasch Measurement Transactions, 25, 1348–1349.

    Google Scholar 

  • Twiss, J., McKenna, S. P., Graham, J., Swetz, K., Sloan, J., & Gomberg-Maitland, M. (2016). Applying Rasch analysis to evaluate measurement equivalence of different administration formats of the Activity Limitation scale of the Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR). Health and Quality of Life Outcomes, 14(1). https://doi.org/10.1186/s12955-016-0462-2.

  • Wright, B. D., & Stone, M. H. (2004). Making measures. Chicago: Phaneron Press.

  • Zickar, M. J., & Broadfoot, A. A. (2009). The partial revival of a dead horse? Comparing classical test theory and item response theory. In C. E. Lance & R. J. Vandenberg (Eds.), Statistical and methodological myths and urban legends: doctrine, verity, and fable in the organizational and social sciences (pp. 37–59). New York: Routledge.

  • Zuffian, A., Alessandri, G., Gerbino, M., Luengo Kanacri, B. P., Di Giunta, L., Milioni, M., & Caprara, G. V. (2013). Academic achievement: The unique contribution of self-efficacy beliefs in self-regulated learning beyond intelligence, personality traits, and self-esteem. Learning and Individual Differences, 23(1), 158–162. https://doi.org/10.1016/j.lindif.2012.07.010.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Scientific and Technical Research Council—Argentina (CONICET for its acronym in Spanish).

Author Contributions

M.C. designed and executed the study, and contributed in writing all parts of the manuscript. V.E.M. analyzed the data and wrote and edited all parts of the manuscript. F.B.G. collaborated in the data collection, assisted with the data analyses and the writing and editing of the final manuscript. A.E.A. and S.J.G. collaborated with data collection and writing the literature review and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Cupani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the Declaration of Helsinki (1964) and its later amendments or comparable ethical standards. The National University of Cordoba provided IRB approval for this study.

Informed Consent

It was obtained from all participants in the study and their parents.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cupani, M., Morán, V.E., Ghío, F.B. et al. Psychometric Evaluation of the Big Five Questionnaire for Children (BFQ-C): A Rasch Model Approach. J Child Fam Stud 29, 2472–2486 (2020). https://doi.org/10.1007/s10826-020-01752-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10826-020-01752-y

Keywords

Navigation