Skip to main content
Log in

Floating/grounded charged controlled memristor emulator using DVCCTA

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, a charge-based memristor emulator is designed using a single active current mode component Differential Voltage Current Conveyor Transconductance Amplifier with one capacitor and two resistors as passive components. Importantly, the proposed circuit topology can be changed to either grounded or floating configuration using a single switch. Moreover, the proposed memristor design can be operated either in incremental or decremental configuration by using another switch. Therefore, using only two switches, the same circuitry can be utilized to design the floating/grounded incremental/decremental memristor. The pinched hysteresis loop area can be controlled by applying different biasing voltages. Further, the mathematical analysis is performed to drive the theoretical TiO2 based results for the proposed memristor emulator. In addition, simulations confirming the theoretical analysis are conducted in PSPICE using the 180 nm TSMC technology with a supply voltage of ± 0.9 V by varying frequencies and capacitances to obtain a pinched hysteresis loop. The presented circuit performs effectively for frequencies upto 500 MHz while operating with grounded type memristor and 300 MHz with floating type design. To check the ability to remember the history of the proposed memristor, the non-volatility test is performed for both the incremental and decremental configurations. Moreover, the suggested memristor design is applied in an adaptive learning circuit to prove its feasibility in neuromorphic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are included within the article and its supplementary information files.  However, raw data are available from the authors upon reasonable request and with the permission of the data providers.

References

  1. Chua, L.O.: Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–512 (1971)

    Article  Google Scholar 

  2. Adhikari, S.P., Sah, M.P., Kim, H., Chua, L.O.: Three fingerprint of memristor. IEEE Trans. Circuits Syst. I: Regul. Pap. 60(11), 3008–3021 (2013)

    Article  Google Scholar 

  3. Saleh, S., Koldehofe, B.: On memristors for enabling energy efficient and enhanced cognitive network functions. IEEE Access 10, 129279–129312 (2022)

    Article  Google Scholar 

  4. Liu, X., Zeng, Z.: Memristor crossbar architectures for implementing deep neural networks. Complex Intell. Syst. 8(2), 787–802 (2022)

    Article  MathSciNet  Google Scholar 

  5. Li, H.H., Chen, Y., Liu, C., Strachan, J.P., Davila, N.: Looking ahead for resistive memory technology: a broad perspective on ReRAM technology for future storage and computing. IEEE Consum. Electron. Mag. 6(1), 94–103 (2017)

    Article  Google Scholar 

  6. Xue, X., Wang, C., Liu, W., Lv, H., Wang, M., Zeng, X.: A RISC-V processor with area-efficient memristor-based in-memory computing for hash algorithm in blockchain applications. Micromachines 10(8), 541 (2019)

    Article  Google Scholar 

  7. Benatti, L., Zanotti, T., Pavan, P., Puglisi, F.M.: Ultra-low power logic in memory with commercial grade memristors and FPGA-based smart-IMPLY architecture. Microelectron. Eng. 280, 112062 (2023)

    Article  Google Scholar 

  8. Shirinzadeh, S., Soeken, M., Gaillardon, P.-E., Drechsler, R.: Logic synthesis for RRAM-based in-memory computing. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(7), 1422–1435 (2018)

    Article  Google Scholar 

  9. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  10. Ilyas, N., Li, D., Li, C., et al.: Analog switching and artificial synaptic behavior of Ag/SiOx:Ag/TiOx/p++-Si memristor device. Nanoscale Res. Lett. 15, 30 (2020)

    Article  Google Scholar 

  11. Chien W.C. et. al.: A Multi-level 40 nm WOX resistive memory with excellent reliability. 2011 International electron devices meeting Tech. Dig., 5–7(2011)

  12. Wang, C., He, W., Tong, Y., et al.: Investigation and manipulation of different analog behaviors of memristor as electronic synapse for neuromorphic applications. Sci. Rep. 6, 22970 (2016)

    Article  Google Scholar 

  13. Chang, Y.F., Fowler, B., Chen, Y.C., et al.: Demonstration of synaptic behaviors and resistive switching characterizations by proton exchange reactions in silicon oxide. Sci. Rep. 6, 21268 (2016)

    Article  Google Scholar 

  14. Gogoi, H.J., Mallajosyula, A.T.: A comparative study on the forming methods of chalcogenide memristors to optimize the resistive switching performance. J. Phys. D: Appl. Phys. 53(44), 445108 (2020)

    Article  Google Scholar 

  15. Chanthbouala, A., Garcia, V., Cherifi, R.O., et al.: A ferroelectric memristor. Nat. Mater. 11(10), 860–864 (2012)

    Article  Google Scholar 

  16. Kim, H., Sah, M.P., Yang, C., Cho, S., Chua, L.O.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Reg. Pap. 59(10), 2422–2431 (2012)

    Article  MathSciNet  Google Scholar 

  17. Yu, D., Iu, H.H.-C., Fitch, A.L., Liang, Y.: A floating memristor emulator based relaxation oscillator. IEEE Trans. Circuits Syst. I: Reg. Pap. 61(10), 2888 (2014)

    Article  Google Scholar 

  18. Kanyal, G., Kumar, P., Paul, S.K., Kumar, A.: OTA based high frequency tunable resistorless grounded and floating memristor emulators. AEU-Int. J. Electron. C. 92, 124–145 (2018)

    Article  Google Scholar 

  19. Kumar, K., Nagar, B.C., Pradhan, G.: Single OTA-based tunable resistorless grounded memristor emulator and its application. J. Comput. Electron. 22, 549–559 (2023)

    Google Scholar 

  20. Ranjan, R.K., Niranjan, R., Bhuwal, N., Khateb, F.: Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU—Int. J. Electron. Commun. 82, 177–190 (2017)

    Article  Google Scholar 

  21. Ranjan, R.K., Rani, N., Pal, R., Paul, S.K., Kanyal, G.: Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 60, 119–128 (2017)

    Article  Google Scholar 

  22. Ayten, U.E., Minaei, S., Sagba, M.: Memristor emulator circuits using single CBTA. AEU Int. J. Electron. Commun. 82, 109–118 (2017)

    Article  Google Scholar 

  23. Petrović, P.B.: Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Anal. Integr. Circuits Signal Process 96(3), 417–433 (2018)

    Article  Google Scholar 

  24. Vista, J., Ranjan, A.: Flux controlled floating memristor employing VDTA: incremental or decremental operation. IEEE Trans. Computer-Aided Des. Int. Circuits Syst. 40(2), 364–372 (2021)

    Google Scholar 

  25. Liu, X., Zeng, Z., Wen, S.: Implementation of memristive neural network with full-function Pavlov associative memory. IEEE Trans. Circuits Syst. I, Reg. Pap. 63(9), 1454–1463 (2016)

    Article  MathSciNet  Google Scholar 

  26. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)

    Article  Google Scholar 

  27. Zhang, Y., Shen, Y., Wang, X.P., Cao, L.N.: A novel design for memristor-based logic switch and crossbar circuits, IEEE Trans. Circuits Syst. I Reg. Papers 62(5), 1402–1411 (2015)

    Article  Google Scholar 

  28. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    Article  Google Scholar 

  29. Baghel V. S. and Akashe S.: Low Power Memristor Based 7T SRAM Using MTCMOS Technique. 2015 Fifth International Conference on Advanced Computing & Communication Technologies, Haryana, India, 222–226(2015).

  30. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurcation Chaos 18(11), 3183–3206 (2008)

    Article  MathSciNet  Google Scholar 

  31. Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46(3), 237–238 (2010)

    Article  Google Scholar 

  32. Pan, C., Hong, Q., Wang, X.: A novel memristive chaotic neuron circuit and its application in chaotic neural networks for associative memory. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 40(3), 521–532 (2021)

    Article  Google Scholar 

  33. Halawani, Y., Mohammad, B., Al-Qutayri, M., Al-Sarawi, S.F.: Memristor-based hardware accelerator for image compression. IEEE Trans. Very Large Scale Integr. Syst. 26(12), 2749–2758 (2018)

    Article  Google Scholar 

  34. Yesil, A., Babacan, Y., Kaçar, F.: A new DDCC based memristor emulator circuit and its applications. Microelectron. J. 45(3), 282–287 (2014)

    Article  Google Scholar 

  35. Abuelma’atti, M.T., Khalifa, Z.J.: A continuous-level memristor emulator and its application in a multivibrator circuit. AEU-Int J Electron. Commun. 69(4), 771–775 (2015)

    Article  Google Scholar 

  36. Sánchez-López, C., Carrasco-Aguilar, M.A., Muñiz-Montero, C.: A 16Hz–160kHz memristor emulator circuit. AEU-Int. J. Electron. C. 69(9), 1208–1219 (2015)

    Article  Google Scholar 

  37. Vista, J., Ranjan, A.: A simple floating MOS-memristor for high-frequency applications. IEEE Trans.Very Large Scale Integr. Syst. 27(5), 1186–1195 (2019)

    Article  Google Scholar 

  38. Sözen, H., Çam, U.: Electronically tunable memristor emulator circuit. Analog Integr. Circ. Sig. Process 89, 655–663 (2016)

    Article  Google Scholar 

  39. Kumar N., Kumar M. & Pandey N.: Single DXCCTA based Charge Controlled Floating Incremental/Decremental Memristor Emulator. 2022 8th International Conference on Signal Processing and Communication (ICSC), Noida, India, 663–668(2022).

  40. Gupta, S., Rai, S.K.: New grounded and floating decremental/incremental memristor emulators based on CDTA and its application. Wireless Pers. Commun. 113(2), 773–798 (2020)

    Article  Google Scholar 

  41. Petrovic, P.: A universal electronically controllable memelement emulator based on VDCC with variable configuration. Electronics 11, 3657 (2022)

    Article  Google Scholar 

  42. Ghosh, M., Mondal, P., Borah, S.S., Kumar, S.: Resistorless memristor emulators: floating, grounded using OTA and VDBA for high frequency applications. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 42, 978–986 (2022)

    Article  Google Scholar 

  43. Raj, N., Ranjan, R.K., Khateb, F.: Flux-controlled memristor emulator and its experimental results. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(4), 1050–1061 (2020)

    Article  Google Scholar 

  44. Shankar, C., Singh, S.V., Imam, R.: SIFO–VM/TIM universal biquad filter using single DVCCTA with fully CMOS realization. Analog Integr. Circ. Sig. Process 109, 33–46 (2021)

    Article  Google Scholar 

  45. Memristive model of amoeba learning. Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.80, 2009, Art. no. 021926.

Download references

Acknowledgements

The authors would like to acknowledge Swati Verma for her valuable insights and suggestions.

Funding

This research was conducted without receiving any funding from public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhee Bhuwal.

Ethics declarations

Conflict of interest

The authors would like to assert that there are no conflicts of interest regarding this research study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuwal, N., Majumder, M.K. & Gupta, D. Floating/grounded charged controlled memristor emulator using DVCCTA. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02176-3

Keywords

Navigation