Skip to main content
Log in

Analytical investigation of thermodynamic properties of power electronic semiconductor materials

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Theoretical and experimental investigations are critical for accurately investigating the structure and physical properties of semiconductors, allowing their widespread use in power electronic devices. The heat capacities are important thermal properties needed to examine the electronic and electrical properties of device materials. The specific heat capacities of power electronic semiconductors, such as (\({\text{GaN}}\)) gallium nitride, (\({\text{SiC}}\)) silicon carbide, (\({\text{Ga}}_{2} {\text{O}}_{3}\)) gallium oxide, and diamond, have been evaluated theoretically using the recently developed Einstein–Debye approximation. On the grounds of the Einstein–Debye approach, the derived general analytical expression for the calculation of the heat capacities is valid for the entire temperature range. The calculation results are compared with the previously available experimental and theoretical data for illustrating the correctness of the method. The evaluation and literature analysis confirm the effectiveness of the proposed method. As seen from the comparison with various results reported in the literaure, the results obtained from this approach are convenient and competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Inquiries about data availability should be directed to the authors.

References

  1. Trzynadlowski, A.M.: Introduction to Modern Power Electronics. Wiley, Canada (2016)

    Google Scholar 

  2. Skvarenina, T.L.: The Power Electronics Handbook. CRC Pres, New York (2002)

    Google Scholar 

  3. Mohon, N., Undeland, T.M., Robbins, W.P.: Power Electronics, Converters, Applications and Design. Wiley, New York (1995)

    Google Scholar 

  4. Ayalew, T.: SiC semiconductor devices technology, modeling and simulation. Ph.D. dissertation, Technischen Universität Wien, Vienna, Austria (2004)

  5. Harris, G.L.: Properties of Silicon Carbide. Harward University, New York (1988)

    Google Scholar 

  6. Saddow, S.E., Agarwal, A.K.: Advances in Silicon Carbide Processing and Applications. Artech House, Boston (2004)

    Google Scholar 

  7. Baliga, B.J. (ed.): Introduction in Wide Bandgap Semiconductor Power Devices. Woodhead Publishing, Sawston (2019)

    Google Scholar 

  8. Eddy, C.R., Jr., Gaskill, D.K.: Silicon carbide as a platform for power electronics. Science 324(5933), 1398–1400 (2009)

    Article  Google Scholar 

  9. Van Wyk, J.D., Lee, F.C.: On a future for power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 1(2), 59–72 (2013)

    Article  Google Scholar 

  10. Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S.: Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York (2001)

    Google Scholar 

  11. Madelung, O.: Semiconductors—basic data. In: Data in Science and Technology, vol. 1. Springer, Berlin (1996)

  12. Kassakian, J.G., Jahns, T.M.: Evolving and emerging applications of power electronics in systems. IEEE J. Emerg. Sel. Top. Power Electron. 1(2), 47–58 (2013)

    Article  Google Scholar 

  13. Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T., Yamakoshi, S.: Development of gallium oxide power devices. Phys. Status Solidi (a) 211(1), 21–26 (2014)

    Article  Google Scholar 

  14. Chow, T.-S.: SiC and GaN high voltage power switching devices. Mater. Sci. Forum 338–342, 1155–1160 (2000)

    Article  Google Scholar 

  15. Langpoklakpam, C., Liu, A.C., Chu, K.H., Hsu, L.H., Lee, W.C., Chen, S.C., Kuo, H.C.: Review of silicon carbide processing for power MOSFET. Crystals 12(2), 245 (2022)

    Article  Google Scholar 

  16. Matsunami, H.: Current SiC technology for power electronic devices beyond Si. Microelectron. Eng. 83(1), 2–4 (2006)

    Article  Google Scholar 

  17. Wellmann, P.J.: Power electronic semiconductor materials for automotive and energy saving applications—SiC, GaN, Ga2O3, and diamond. Z. Anorg. Allg. Chem. 643(21), 1312–1322 (2017)

    Article  Google Scholar 

  18. Passler, R.: Limiting Debye temperature behavior following from cryogenic heat capacity data for group-IV, III–V, and II–VI materials. Phys. Status Solidi B 247(1), 77–92 (2010)

    Article  Google Scholar 

  19. Guo, D., Guo, Q., Chen, Z., Wu, Z., Li, P., Tang, W.: Review of Ga2O3-based optoelectronic devices. Mater. Today Phys. 11, 100157 (2019)

    Article  Google Scholar 

  20. Lee, W.H., Yao, X.H.: First principle investigation of phase transition and thermodynamic properties of SiC. Comput. Mater. Sci. 106, 76–82 (2015)

    Article  Google Scholar 

  21. Durandurdu, M.: Pressure-induced phase transition of SiC. J. Phys. Condens. Matter 16(25), 4411–4417 (2004)

    Article  Google Scholar 

  22. Eker, S., Durandurdu, M.: Pressure-induced phase transformation of 4H-SiC: an ab initio constant-pressure study. EPL 87(3), 36001 (2009)

    Article  Google Scholar 

  23. Miao, M.S., Lambrecht, W.R.L.: Unified path for high-pressure transitions of SiC polytypes to the rocksalt structure. Phys. Rev. B 68(9), 092103 (2003)

    Article  Google Scholar 

  24. Novir, S.B., Aram, M.R.: Quantum mechanical investigations of mechanical and thermodynamic properties of SiC and ZrO2 ceramics. J. Mol. Model. 27, 269 (2021)

    Article  Google Scholar 

  25. Touloukian, Y.S., Cezairyliyan, A., Ho, C.Y., et al.: Specific Heat of Solids. Hemisphere Publishing Corporation, New York (1988)

    Google Scholar 

  26. Ha Moon, W., Hwang, H.J.: Structural and thermodynamic properties of GaN: a molecular dynamics simulation. Phys. Lett. A 315(3–4), 319–324 (2003)

    Article  Google Scholar 

  27. Lu, L.-Y., Chen, X.-R., Cheng, Y., Zhao, J.-Z.: Transition phase and thermodynamic properties of GaN via first-principles calculations. Solid State Commun. 136(3), 152–156 (2005)

    Article  Google Scholar 

  28. Sun, X., Chen, Q., Chu, Y., Wang, C.: Structural and thermodynamic properties of GaN at high pressures and high temperatures. Physica B 368(1–4), 243–250 (2005)

    Article  Google Scholar 

  29. Achoura, H., Louhibi-Faslab, S., Manac, F.: Theoretical investigation of GaN. Phys. Procedia 55, 17–23 (2014)

    Article  Google Scholar 

  30. Passler, R.: Characteristic non-Debye heat capacity formula applied to GaN and ZnO. J. Appl. Phys. 110(4), 043530 (2011)

    Article  Google Scholar 

  31. Lee, S., Kwon, S.Y., Ham, H.J.: Specific heat capacity of gallium nitride. Jpn. J. Appl. Phys. 50(11S), 11RG02 (2011)

    Article  Google Scholar 

  32. Safieddine, F., Hassan, F.E.H., Kazan, M.: Comparative study of the fundamental properties of Ga2O3 polymorphs. J. Solid State Chem. 312, 123272 (2022)

    Article  Google Scholar 

  33. Zinkevich, M., Aldinger, F.: Thermodynamic assessment of the gallium-oxygen system. J. Am. Ceram. Soc. 87(4), 683–691 (2004)

    Article  Google Scholar 

  34. Shi, F., Qiao, H.: Preparations, properties and applications of gallium oxide nanomaterials—a review. Nano Select 3(2), 348–373 (2022)

    Article  Google Scholar 

  35. Vassiliev, V.: Optimization of the heat capacities of diamond-like compounds. J. Mater. Sci. Eng. B 11(4–6), 76–80 (2021)

    Google Scholar 

  36. Mounet, N., Marzari, N.: First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71(20), 205214 (2005)

    Article  Google Scholar 

  37. Wilks, J., Wilks, E.: Properties and Applications of Diamond. Oxford Press, Oxford (1991)

    Google Scholar 

  38. Prado, E.O., Bolsi, P.C., Sartori, H.C., Pinheiro, J.R.: An overview about Si, superjunction, SiC and GaN power MOSFET technologies in power electronics applications. Energies 15(14), 5244 (2022)

    Article  Google Scholar 

  39. Cankurtaran, M., Askerov, B.M.: Equation of state, isobaric specific heat, and thermal expansion of solids with polyatomic basis in the Einstein–Debye approximation. Phys. Status Solidi (b) 194(2), 499–507 (1996)

    Article  Google Scholar 

  40. Askerov, B.M., Cankurtaran, M.: Isobaric specific heat and thermal expansion of solids in the Debye approximation. Phys. Status Solidi (b) 185(2), 341–348 (1994)

    Article  Google Scholar 

  41. Askerov, B.M., Figarova, S.R.: Thermodynamics Gibbs Method and Statistical Physics of Electron Gases. Springer, Heidelberg (2009)

    Google Scholar 

  42. Dogan, Z., Mehmetoglu, T.: Accurate calculations of the heat capacities of pure metals using the Einstein–Debye approximation. J. Eng. Phys. Thermophys. 92(6), 1620–1624 (2019)

    Article  Google Scholar 

  43. Mehmetoglu, T.: An analytical technique for evaluating heat capacity of GeS, GeSe, GeTe and SnS semiconductors using Eınsteın–Debye approximation. J. Sci. Arts 21(3), 857–862 (2021)

    Article  Google Scholar 

  44. Eser, E., Duyuran, B., Bölükdemir, M.H., Koç, H.: A study on heat capacity of oxide and nitride nuclear fuels by using Einstein–Debye approximation. Nucl. Eng. Technol. 52(6), 1208–1212 (2020)

    Article  Google Scholar 

  45. Nernst, W., Lindemann, F.A.: Specific heat and quantum theory. Z. Electrochem. Angew. P 17, 817–827 (1911)

    Google Scholar 

  46. Landau, L.D., Lifshits, E.M.: Statistical Physics. Pergamon Press, London (1959)

    Google Scholar 

  47. Gonzalez, I., Kondrashuk, I., Moll, V.H., Vega, A.: Analytic expressions for Debye functions and the heat capacity of a solid. Mathematics 10(10), 1745 (2022)

    Article  Google Scholar 

  48. Anderson, W.: An analytic expression approximating the Debye heat capacity function. AIP Adv. 9(7), 075108 (2019)

    Article  Google Scholar 

  49. Dubinov, A.E., Dubinova, A.A.: Exact integral-free expressions for the integral Debye functions. Tech. Phys. Lett. 34(12), 999–1001 (2008)

    Article  Google Scholar 

  50. Eser, E., Koç, H.: Investigations of temperature dependences of electrical resistivity and specific heat capacity of metals. Physica B 492, 7–10 (2016)

    Article  Google Scholar 

  51. Koç, H., Eser, E.: Estimation of the heat capacity of CdTe semiconductor. Mod. Phys. Lett. B 30(04), 1650026 (2016)

    Article  Google Scholar 

  52. Gokbulut, M., Gursoy, G., Aşcı, Ş, Eser, E.: Study on specific heat capacity and thermal conductivity of uranium nitride. Kerntechnik 86, 400–403 (2021)

    Article  Google Scholar 

  53. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1980)

    Google Scholar 

  54. Leitner, J., Strejc, A., Sedmidubsky, D., Ruzicka, K.: High temperature and heat capacity of GaN. Thermochem. Acta 401(2), 169–173 (2003)

    Article  Google Scholar 

  55. Yan, W.S., Zhang, R., Xie, Z.L., Xiu, X.Q., Zheng, Y.D., Liu, Z.G., Xu, S., He, Z.H.: The contributions of the acoustic modes and optical modes to the primary pyroelectric coefficient of GaN. Appl. Phys. Lett. 94(24), 242111 (2009)

    Article  Google Scholar 

  56. Kremer, R.K., Cardona, M., Schmitt, E.: Heat capacity of -GaN: isotope effects. Phys. Rev. B 72(7), 075209 (2005)

    Article  Google Scholar 

  57. Sanati, M., Estreicher, S.K.: Specific heat and entropy of GaN. J. Phys. Condens. Matter 16(28), L327 (2004)

    Article  Google Scholar 

  58. Pässler, R.: Efficient Debye function interpolation formulae: sample applications to diamond. Rec. Prog. Mater. 3(4), 1–42 (2021)

    Article  Google Scholar 

  59. Dinsdale, A.T.: SGTE data for pure elements. Calphad 15(4), 317–425 (1991)

    Article  Google Scholar 

  60. Victor, A.C.: Heat capacity of diamond at high temperatures. J. Chem. Phys. 36, 1903 (1962)

    Article  Google Scholar 

  61. Desnoyers, J.E., Morrison, J.A.: The heat capacity of diamond between 12.8° and 277°K. Philos. Mag. 3(1), 42–48 (1958)

    Article  Google Scholar 

  62. Tohei, T., Kuwabara, A., Oba, F., Tanaka, I.: Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B 73(6), 064304 (2006)

    Article  Google Scholar 

  63. Poole, C.P., Jr.: Encyclopedıc Dıctıonary of Condensed Matter Physıcs, vol. 1. Elsevier Pub., London (2004)

    Google Scholar 

  64. Chekhovskoy, VYa.: Enthalpy and thermodynamic properties of SiC at temperatures up to 2900 K. J. Chem. Thermodyn. 3(3), 289–296 (1971)

    Article  Google Scholar 

  65. Porter, L.J., Yip, S., Li, J.: Atomistic modeling of finite-temperature properties of beta SiC. I. Lattice vibrations, heat capacity, and thermal expansion. J. Nucl. Mater. 246(1), 53–59 (1997)

    Article  Google Scholar 

  66. Taylor, R.E., Groot, H., Ferrier, J.: Thermophysical properties of CVD SiC, thermophysical properties laboratory report TPRL 1336, School of Mechanical Engineerins, Purdue University (1993)

  67. Su, J., Zhang, J., Guo, R., Lina, Z., Liua, M., Zhang, J., Chang, J., Hao, Y.: Mechanical and thermodynamic properties of two-dimensional monoclinic Ga2O3. Mater. Des. 184, 108197 (2019)

    Article  Google Scholar 

  68. King, E.G.: Low temperature heat capacities and entropies at 298.15 K of some oxides of gallium, germanium, molybdenum and niobium. J. Am. Chem. Soc. 80(8), 1799–1800 (1958)

    Article  Google Scholar 

  69. Liu, Q., Chen, Z., Zhou, X.: Electronic, thermal, and thermoelectric transport properties of ε-Ga2O3 from first principles. ACS Omega 7(14), 11643–11653 (2022)

    Article  Google Scholar 

  70. Order, C., Einfeldt, S., Figge, S., Hommel, D.: Temperature dependence of the thermal expansion of GaN. Phys. Rev. B 72, 085218 (2005)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ZD and TM. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zafer Dogan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest. This study does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan, Z., Mehmetoglu, T. Analytical investigation of thermodynamic properties of power electronic semiconductor materials. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02167-4

Keywords

Navigation