Skip to main content
Log in

Design and analysis of a highly efficient 2D/3D bilayer-based perovskite solar cell

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Despite significant development of perovskite solar cells (PSCs) in the last few years, several issues need to be addressed for commercialization. The fabrication of a 2-dimensional/3-dimensional (2D/3D) perovskite layer as the light absorbing layer has recently come up as one of the most efficient methods to overcome this barrier without compromising the physical functionality of the device. Additionally, the inverted p–i–n configuration of2D/3D bilayer PSCs has caught lots of attention in the recent years owing to low-cost, low-temperature growth process and inhibited hysteresis properties. In this study, we introduce an inverted 2D/3D bilayer PSC with a novel configuration of FTO/NiOx/BA2MA3Pb4I13/MAPbI3/C60/Au and computationally study the parameters that affect the performance of the modeled device. Considerable power conversion efficiency (PCE) of 28.24% was achieved after optimizing the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Safat Dipta, S., Uddin, A., Conibeer, G.: Enhanced light management and optimization of perovskite solar cells incorporating wavelength dependent reflectance modeling. Heliyon 8, e11380 (2022)

    Article  Google Scholar 

  2. National Renewable Energy Laboratory (NREL). Interactive Best Research–Cell Efficiency Chart | Photovoltaic Research | NREL. (Accessed November 2022).

  3. Karimi, E., Ghorashi, S.M.B.: Simulation of perovskite solar cell with P3HT hole-transporting materials. J. Nanophotonics 11(3), 032510 (2017)

    Article  Google Scholar 

  4. Safat Dipta, S., Uddin, A.: Stability issues of perovskite solar cells: a critical review. Energy Technol. 9(11), 2100560 (2021)

    Article  Google Scholar 

  5. Smith, I.C., Hoke, E.T., Solis-Ibarra, D., McGehee, M.D., Karunadasa, H.I.: A layered hybrid perovskite solar–cell absorber with enhanced moisture stability. Angew. Chemie. Int. Ed. 53, 11232–11235 (2014)

    Article  Google Scholar 

  6. Zheng, Y., Niu, T., Ran, X., Qiu, J., Li, B., Xia, Y., Chen, Y., Huang, W.: Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application. J. Mater. Chem. A. 7, 13860–13872 (2019)

    Article  Google Scholar 

  7. Lim, K.-G., Kim, H.-B., Jeong, J., Kim, J.Y., Lee, T.-W.: Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26(37), 6461–6466 (2014)

    Article  Google Scholar 

  8. Zhou, T., Lai, H., Liu, T., Lu, D., Wan, X., Zhang, X., Liu, Y., Chen, Y.: Highly efficient and stable solar cells based on crystalline oriented 2D/3D hybrid perovskite. Adv. Mater. 31, 1901242 (2019)

    Article  Google Scholar 

  9. Ge, C., Xue, Y.Z.B., Li, L., Tang, B., Hu, H.: Recent progress in 2D/3D multidimensional metal halide perovskites solar cells. Front. Mater. 7, 380 (2020)

    Article  Google Scholar 

  10. Chakrabartty, J., Aminul Islam, Md., Reza, S.: Performance analysis of highly efficient 2D/3D bilayer inverted perovskite solar cells. Sol. Energy 230, 195–207 (2021)

    Article  Google Scholar 

  11. Yu, D., Cao, F., Su, C., Xing, G.: Exploring, identifying, and removing the efficiency-limiting factor of mixed-dimensional 2D/3D perovskite solar cells. Acc. Chem. Res. 56(8), 959–970 (2023)

    Article  Google Scholar 

  12. Safat Dipta, S., Rahaman, M.H., Binte Tarique, W., Howlader, A., Pratik, A., Stride, J.A., Uddin, A.: Highly efficient double-side-passivated perovskite solar cells for reduced degradation and low photovoltage loss. Sol. Energy Mater. Sol. Cells 266, 112655 (2024)

    Article  Google Scholar 

  13. Chen, B., Yang, M., Priya, S., Zhu, K.: Origin of J-V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 7, 905–917 (2016)

    Article  Google Scholar 

  14. Levine, I., Nayak, P.K., Wang, J.T.-W., Sakai, N., Van Reenen, S., Brenner, T.M., Mukhopadhyay, S., Snaith, H.J., Hodes, G., Cahen, D.: Interface–dependent ion migration/accumulation controls hysteresis in MAPbI3 solar cells”. J. Phys. Chem. C 120, 16399–16411 (2016)

    Article  Google Scholar 

  15. Jacobs, D.A., Wu, Y., Shen, H., Barugkin, C., Beck, F.J., White, T.P., Weber, K., Catchpole, K.R.: Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation. Phys. Chem. Chem. Phys. 19, 3094–3103 (2017)

    Article  Google Scholar 

  16. Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)

    Article  Google Scholar 

  17. Kumar, A., Singh, S., Srivastavac, K., Sharma, A., Sharma, D.K.: Performance and stability enhancement of mixed dimensional bilayer inverted perovskite (BA2PbI4/MAPbI3) solar cell using drift diffusion model. Sustain. Chem. Pharm. 29, 100807 (2022)

    Article  Google Scholar 

  18. Wang, X., Rakstys, K., Jack, K., Jin, H., Lai, J., Li, H., Ranasinghe, C.S.K., Saghaei, J., Zhang, G., Burn, P.L., Gentle, I.R., Shaw, P.E.: Engineering fluorinated–cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 12, 52 (2021)

    Article  Google Scholar 

  19. Burgelman, M., Verschraegen, J., Degrave, S., Nollet, P.: Modeling thin–film PV devices. Prog. Photovolt. 12, 143–153 (2004)

    Article  Google Scholar 

  20. Li, X., Hoffman, J.M., Kanatzidis, M.G.: The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021)

    Article  Google Scholar 

  21. Liu, Y., Akin, S., Pan, L., Uchida, R., Arora, N., Milić, J.V., Hinderhofer, A., Schreiber, F., Uhl, A.R., Zakeeruddin, S.M., Hagfeldt, A., Ibrahim Dar, M., Grätzel, M.: Ultrahydrophobic 3D/2D fluoroarene bilayer–based water–resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019)

    Article  Google Scholar 

  22. Dixit, H., Punetha, D., Pandey, S.K.: Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 179, 969–976 (2019)

    Article  Google Scholar 

  23. Tiwari, P., Alotaibi, M.F., Al-Hadeethi, Y., Srivastava, V., Arkook, B., Sadanand, Lohia, P., KumarDwivedi, D., Umar, A., Algadi, H., Baskoutas, S.: Design and simulation of efficient SnS–based solar cell using spiro–OMeTAD as hole transport layer. Nanomaterials 12, 2506 (2022)

    Article  Google Scholar 

  24. Arumugam, G.M., Karunakaran, S.K., Liu, C., Zhang, C., Guo, F., Wu, S., Mai, Y.: Inorganic hole transport layers in inverted perovskite solar cells: a review. Nano Select. 2, 1081–1116 (2021)

    Article  Google Scholar 

  25. Chen, W., Pang, G., Zhou, Y., Sun, Y., Liu, F.-Z., Chen, R., Chen, S., Djurišić, A.B., He, Z.: Stabilizing n–type hetero–junctions for NiOx based inverted planar perovskite solar cells with an efficiency of 21.6. J. Mater. Chem. 8, 1865–1874 (2020)

    Article  Google Scholar 

  26. Karmalkar, S., Haneefa, S.: A physically based explicit J-V model of a solar cell for simple design calculations. IEEE Electron Device Lett. 29(5), 449–451 (2008)

    Article  Google Scholar 

  27. Abdolahzadeh Ziabari, A., Mohabbati Zindanlou, N., Hassanzadeh, J., Golshahi, S., Bagheri Khatibani, A.: Fabrication and study of single-phase high-hole-mobility CZTS thin films for PV solar cell applications: influence of stabilizer and thickness. J. Alloys Compd. 842, 155741 (2020)

    Article  Google Scholar 

  28. Chowdhury, M.S., Shahahmadi, S.A., Chelvanathan, P., Tiong, S.K., Amin, N., Techato, K., Nuthammachot, N., Chowdhury, T., Suklueng, M.: Effect of deep level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS–1D. Results Phys. 16, 102839 (2020)

    Article  Google Scholar 

  29. Wang, F., Bai, S., Tress, W., Hagfeldt, A., Gao, F.: Defects engineering for high performance perovskite solar cells. npj Flex Electron 2, 22 (2018)

    Article  Google Scholar 

  30. Jamal, M.S., Shahahmadi, S.A., Wadi, M.A.A., Chelvanathan, P., Asim, N., Misran, H., Hossain, M.I., Amin, N., Sopian, K., Akhtaruzzaman, M.: Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik 182, 1204–1210 (2019)

    Article  Google Scholar 

  31. Green, M.A.: Solar cell fill factors: general graph and empirical expressions. Solid State Electron. 24, 788 (1981)

    Article  Google Scholar 

  32. Shyma, A.P., Sellappan, R.: Computational probing of Tin–based Lead–free perovskite solar cells: effect of absorber parameters and various electron transport layer materials on device performance. Materials 15, 7859 (2022)

    Article  Google Scholar 

  33. Haider, S.Z., Anwar, H., Wang, M.: Remarkable performance optimization of inverted p–i–n architecture perovskite solar cell with CZTS as hole transport material. Physica B 620, 413270 (2021)

    Article  Google Scholar 

  34. Zhao, P., Liu, Z., Lin, Z., Chen, D., Su, J., Zhang, C., Zhang, J., Chang, J., Hao, Y.: Device simulation of inverted CH3NH3PbI3–xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol. Energy 169, 11–18 (2018)

    Article  Google Scholar 

  35. Zhou, Z.J., Deng, Y.Q., Zhang, P.P., Kou, D.X., Zhou, W.H., Meng, Y.N., Yuan, S.J., Wu, S.X.: Cu2ZnSnS4 quantum dots as hole transport material for enhanced charge extraction and stability in all–inorganic CsPbBr 3 perovskite solar cells. Sol. RRL. 3, 1800354 (2019)

    Article  Google Scholar 

  36. Wang, Z., Liu, L., Wang, Y., Ma, Y., Yang, Z., Wan, M., Zhu, H., Mahmoudi, T., Hahn, Y.-B., Mai, Y.: Green anti solvent–mediators stabilize perovskites for efficient NiOx–based inverted solar cells with Voc approaching 1.2 V. Chem. Eng. J. 457, 141204 (2023)

    Article  Google Scholar 

  37. Irannejad, N., Rezaei, B., Ensafi, A.: Self–healing 2D/3D perovskite for efficient and stable p–i–n perovskite solar cells. Chemosphere 311, 136893 (2023)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

M. Najafi designed the model and the computational framework and analyzed the data. M. Najafi and A. Kiani and A. Ghadimi carried out the implementation. M. Najafi and A. Ghadimi performed the calculations. M. Najafi, A. Ghadimi and S. A. Sedig Ziabari and wrote the manuscript with input from all authors. M. Najafi, A. Ghadimi and A. Abdolahzade Ziabari conceived the study and were in charge of overall direction and planning.

Corresponding author

Correspondence to A. Ghadimi.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, M., Kiani–Sarkaleh, A., Ghadimi, A. et al. Design and analysis of a highly efficient 2D/3D bilayer-based perovskite solar cell. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02152-x

Keywords

Navigation