Skip to main content
Log in

Analog performance and linearity analysis of a p-type group IV-IV SiGe TFET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This work investigates a dual-material gate p-channel tunnel field-effect transistor (p-DMG-TFET) with a Si/SiGe heterojunction for achieving better performance in radio frequency (RF) applications. The results of the simulation demonstrate an improved on-current/off-current ratio (Ion/Ioff ~ 109) and minimum subthreshold swing (19 mV/decade) for the proposed Si0.7Ge0.3 hetero-TFET versus Si used as channel material. A comprehensive simulation study of both Si0.7Ge0.3 and Si channel devices is performed, and on the basis of their DC, analog/RF, and linearity performance, a direct comparison reveals improved results for digital and analog applications. Numerous characteristics of the proposed DMG-HJ-TFET, including IDS, CGS, CGD, gm, gds, fT, TGF, TFP, GFP, and GTFP, are investigated and compared with a Si channel device, in which the proposed device shows better performance for RF circuitry applications. RF figures of merit (FOMs) including gm2, gm3, VIP2, VIP3, 1-dB compression point, IIP3, and IMD3 are also investigated for the proposed structure, which again demonstrates better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Code availability: not applicable.

References

  1. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 20952110 (2010)

    Article  Google Scholar 

  2. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy efficient electronic switches. Nature 479(7373), 329337 (2011)

    Article  Google Scholar 

  3. Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron. Device 56, 456465 (2007)

    Google Scholar 

  4. Wang, P.F., Hilsenbeck, K., Nirschl, T.: Complementary tunneling transistor for low power application. Solid-State Electron. 48(12), 22812286 (2004)

    Article  Google Scholar 

  5. Choi, W.Y., Park, B.G., Lee, J.D.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743745 (2007)

    Google Scholar 

  6. Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)

    Article  ADS  CAS  Google Scholar 

  7. The international technology roadmap for semiconductors. http://www.itrs.net

  8. Bhuwalka, K., Schulze, J., Eisele, I.: Scaling the vertical tunnel FET with tunnel bandgap modulation and gate work-function engineering. IEEE Trans. Electron Devices 52(5), 909–917 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Kim, S.H., Kam, H., Hu, C., Liu, T.J.K.: Germanium-source tunnel field effect transistors with record high ION/IOFF. In: Proc. VLSI Symp. Tech. Dig, pp. 178–179 (2009)

  10. Toh, E., Wang, G.H., Chan, L., Sylvester, D., Heng, C., Samudra, G., Yeo, Y.: Device design and scalability of a double-gate tunneling field-effect transistor with silicon-germanium source. Jpn. J. Appl. Phys. 47(4), 2593–2597 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-K gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Chattopadhyay, A., Mallik, A.: Impact of a spacer dielectric and a gate overlap/underlap on the device performance of a tunnel field-effect transistor. IEEE Trans. Electron Devices 58(3), 677–683 (2011)

    Article  ADS  CAS  Google Scholar 

  13. Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)

    Article  ADS  Google Scholar 

  14. Lattanzio, L., De Michielis, L., Ionescu, A.M.: Complementary germanium electron–hole bilayer tunnel FET for sub-0.5-V operation. IEEE Electron Device Lett. 33(2), 167–169 (2012)

    Article  ADS  CAS  Google Scholar 

  15. Mallik, A., Chattopadhyay, A., Omura, Y.: Gate-on-germanium source tunnel field-effect transistor enabling sub-0.5-V operation. Jpn. J. Appl. Phys. 53(10), 104201-1–104201-7 (2014)

    Article  ADS  Google Scholar 

  16. Huang, J.Z., Long, P., Povolotskyi, M., Klimeck, G., Rodwell, M.J.W.: P-type tunnel FETs with triple heterojunctions. IEEE J. Electron. Devices Soc. 4(6), 410–415 (2016)

    Article  CAS  Google Scholar 

  17. Long, P., Huang, J.Z., Povolotskyi, M., Klimeck, G., Rodwell, M.J.W.: High-current tunneling FETs with (110) orientation and a channel ¯ heterojunction. IEEE Electron Device Lett. 37(3), 345–348 (2016)

    Article  ADS  CAS  Google Scholar 

  18. Bhuwalka, K.K., Born, M., Schindler, M., Schmidt, M., Sulima, T., Eisele, I.: P-Channel tunnel field-effect transistors down to sub-50 nm channel lengths. Jpn. J. Appl. Phys. 45(4B), 3106–3109 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Knoch, J., Mantl, S., Appenzeller, J.: Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid-State Electron. 51(4), 572–578 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Mayer, F., Royer, C.L., Damlencourt, J.F,. Romanjek, K., Andrieu, F., Tabone, C., Previtali, B., Deleonibus, S.: Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible Tunnel FET performance. In: 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA (2008)

  21. Royer, C.L., Mayer, F.: 10th Int. Conf. Ultimate Integration of Silicon, p. 53 (2009)

  22. Verhulst, A.S., Vandenberghe, W.G., Maex, K., De Gendt, S., Heyns, M.M., Groeseneken, G.: Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett. 29(12), 1398–1401 (2008)

    Article  ADS  CAS  Google Scholar 

  23. Virani, H.G., Rao, R.B., Kottantharayil, A.: Investigation of Novel Si/SiGe heterostructures and gate induced source tunneling for improvement of p-channel tunnel field-effect transistors. Jpn. J. Appl. Phys. 49(4S), 04DC12 (2010)

    Article  Google Scholar 

  24. Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Goyal, N., Chaturvedi, P., State, S., Road, L.: Graded silicongermanium channel tunnel field effect transistor (G-TFET), an approach to increase ION without compromising IOFF. In: 2011 International Semiconductor Device Research Symposium (ISDRS). IEEE, College Park, MD, USA

  26. Saurabh, S., Kumar, M.J.: Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor: theoretical investigation and analysis. Jpn. J. Appl. Phys. 48(6R), 064503 (2009)

    Article  ADS  Google Scholar 

  27. Krishnamohan, T., Kim, D., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and << 60mV/dec subthreshold slope. In: IEEE International Electron Devices Meeting. IEEE, pp. 1–3 (2008)

  28. Liow, T.Y., Tan, K.M., Yeo, Y.C., Agarwal, A., Du, A., Tung, C.H., Balasubramanian, N.: Investigation of silicon-germanium fins fabricated using germanium condensation on vertical compliant structures. Appl. Phys. Lett. 87(26), 262104 (2005)

    Article  ADS  Google Scholar 

  29. Balakumar, S., Buddharaju, K.D., Tan, B., Rustagi, S.C., Singh, N., Kumar, R., Lo, G.Q., Tripathy, S., Kwong, D.L.: Germanium-rich SiGe nanowires formed through oxidation of patterned SiGe FINs on insulator. J. Electron. Mater. 38(3), 443–448 (2009)

    Article  ADS  CAS  Google Scholar 

  30. Tezuka, T., Sugiyama, N., Takagi, S.: Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction. Appl. Phys. Lett. 79(12), 1798–1800 (2001)

    Article  ADS  CAS  Google Scholar 

  31. Choudhury, S., Niranjan, N.K., Baishnab, K.L., Guha, K.: Design and simulation of P-TFET for improved ION/IOFF ratio and subthreshold slope using strained Si1−xGexchannelheterojunction. Microsys. Technol. 26(6), 1777–1782 (2020)

    Article  CAS  Google Scholar 

  32. Virani, H.G., Kottantharavil, A.: Optimization of hetero junction n-channel tunnel FET with high-k spacers. In: 2nd International Workshop on Electron Devices and Semiconductor Technology. pp. 1–6 (2009)

  33. Zhao, Q.T., Richter, S., Schulte-Braucks, C., et al.: Strained Si and SiGe nanowire tunnel FETs for logic and analog applications. IEEE J. Electron. Devices Soc. 3, 103–114 (2015)

    Article  Google Scholar 

  34. Ashburn, P.: SiGe Heterojunction Bipolar Transistors. John Wiley & Sons, Hoboken (2004)

    Google Scholar 

  35. Liu, P.W., Pan, J., Chang, T., Tsai, T.L., Chen, T., Liu, Y.C., Tsai, C.H., et al.: 18.3 superior current enhancement in SiGe channel p-MOSFETs fabricated on [110] surface. In: 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers. IEEE, pp. 148–149 (2006)

  36. Goswami, R., Bhowmick, B.: Hetero-gate-dielectric gate-drain underlap nanoscale TFET with a p + Si1-xGex layer at source-channel tunnel junction. In: Proceeding IEEE International Conference on Green Computing Communication and Electrical Engineering ICGCCEE, (2014)

  37. Vishnoi, R., Kumar, M.J.: Compact analytical model of dual material gate tunneling field-effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61(6), 1936–1942 (2014)

    Article  ADS  CAS  Google Scholar 

  38. Mohanty, S.S., Dutta, P., Das, J.K.: A dual gate material tunnel field effect transistor model incorporating two-dimensional Poisson and Schrodinger wave equations. Int. J. Numer. Model. Electron. Netw. Devices Fields 35(1), e2933 (2022)

    Article  Google Scholar 

  39. Mallik, A., Chattopadhyay, A.: Tunnel field-effect transistors for analog/mixed-signal system-on-chip applications. IEEE Trans. Electron Devices 59(4), 888–894 (2012)

    Article  ADS  Google Scholar 

  40. Akram, M.W., Ghosh, B.: Analog performance of double gate junctionless tunnel field effect transistor. J. Semicond. 35(7), 074001 (2014)

    Article  ADS  Google Scholar 

  41. Nigam, K., Pandey, S., Kondekar, P.N.: A barrier controlled charge plasma based TFET with gate engineering for ambipolar suppression and RF/linearity performance improvement. IEEE Trans. Electron Devices 64, 27512757 (2017)

    Article  Google Scholar 

  42. Kanungo, S., Chattopadhyay, S., Gupta, P.S., Sinha, K., Rahaman, H.: Study and analysis of the effects of SiGe source and pocket-doped channel on sensing performance of dielectrically modulated tunnel FET-based biosensors. IEEE Trans. Electron Devices 63(6), 2589–2596 (2016)

    Article  ADS  CAS  Google Scholar 

  43. Kondekar, P.N., Nigam, K., Pandey, S., Sharma, D.: Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE Trans. Electron Devices 64(2), 412–418 (2017)

    Article  ADS  CAS  Google Scholar 

  44. Pindoo, I.A., Sinha, S.K., Chander, S.: Improvement of electrical characteristics of SiGe source based tunnel FET device. SILICON 13, 3209–3215 (2021)

    Article  CAS  Google Scholar 

  45. Sentaurus Device User Guide. Synopsys, Inc., Mountain View, USA (2016)

  46. Hashemi, P., Ando, T.: High Mobility Materials for CMOS Applications, pp. 205–229. IBM Corporation, Yorktown Heights, NY, United States (2018)

    Book  Google Scholar 

  47. Singh, G., Amin, S.I., Anand, S., Sarin, R.K.: Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation. Superlattices Microstruct. 92, 143–156 (2016)

    Article  ADS  CAS  Google Scholar 

  48. Priyadarshani, K.N., Singh, S., Naugarhiya, A.: Dual metal double gate Ge-Pocket TFET (DMG-DG-Ge-Pocket TFET) with hetero dielectric: DC & analog performance projections. SILICON 14(4), 1593–1604 (2022)

    Article  CAS  Google Scholar 

  49. Goswami, Y., Ghosh, B., Asthana, P.K.: Analog performance of Si junctionless tunnel field effect transistor and its improvisation using III–V semiconductor. RSC Adv. 4(21), 10761–10765 (2014)

    Article  ADS  CAS  Google Scholar 

  50. Sharma, D., Vishvakarma, S.K.: Analyses of DC and analog/RF performances for short channel quadruple-gate gate-all-around MOSFET. Microelectron. J. 46(8), 731–739 (2015)

    Article  CAS  Google Scholar 

  51. Mohapatra, S., Pradhan, K., Sahu, P.: Temperature dependence inflection point in ultra-thin Si directly on insulator (SDOI) MOSFETs: an influence to key performance metrics. Superlattice Microstruct 78, 134–143 (2015)

    Article  CAS  Google Scholar 

  52. Ghosh, P., Bhowmick, B.: Effect of temperature on reliability issues of ferroelectric dopant segregated Schottky barrier tunnel field effect transistor (Fe DS-SBTFET). SILICON 12(5), 1137–1144 (2020)

    Article  CAS  Google Scholar 

  53. Kumar, S.P., Agrawal, A., Chaujar, R., Gupta, R.S., Gupta, M.: Device linearity and intermodulation distortion comparison of dual material gate and conventional AlGaN/GaN high electron mobility transistor. Microelectron. Reliab. 51, 587–596 (2011)

    Article  CAS  Google Scholar 

  54. Kumar, S., Singh, K., Nigam, K., Tikkiwal, V.A., Chandan, B.V.: Dual-material dual-oxide double-gate TFET for improvement in DC characteristics, analog/RF and linearity performance. Appl. Phys. A 125(5), 1–8 (2019)

    Article  Google Scholar 

  55. Rogers, J., Plett, C.: Radio Frequency Integrated Circuit Design, pp. 28–32. Artech House, Norwood (2003)

    Google Scholar 

  56. Razavi, B.: RF Microelectronics. Prentice Hall, Hoboken (1998)

    Google Scholar 

  57. Datta, E., Chattopadhyay, A., Mallik, A., Omura, Y.: Temperature dependence of analog performance, linearity, and harmonic distortion for a Ge-source tunnel FET. IEEE Trans. Electron Devices 67(3), 810–815 (2020)

    Article  ADS  CAS  Google Scholar 

  58. Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans. Electron Devices 59(12), 3263–3268 (2012)

    Article  ADS  Google Scholar 

  59. Woerlee, P.H., Knitel, M.J., Langevelde, R.L., Klaassen, D.B.M., Tiemeijer, L.F., Scholten, A.J., et al.: RF-CMOS performance trends. IEEE Trans. Electron. Devices 48(8), 1776–1782 (2001)

  60. Saha, R., Bhowmick, B., Baishya, S.: Temperature effect on RF/analog and linearity parameters in DMG FinFET. Appl. Phys. A Mater. Sci. Process. 124(642) (2018)

  61. Madan, J., Chaujar, R.: Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. Reliab. 16, 227234 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the School of Electronics Engineering, KIIT Deemed to be a university for accommodating us with the required arrangements for our work.

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia, for funding this research (IFKSURC-1-2308).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by SM, PD, and JD. The first draft of the manuscript was written by SM, and all authors commented on the manuscript. All authors read and approved the final manuscript and agreed on the order of appearance of the authors.

Corresponding authors

Correspondence to Sushanta Kumar Mohapatra or Abdullah N. Alodhayb.

Ethics declarations

Conflict of interest

The authors declare no competing interests. The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S.S., Dutta, P., Das, J.K. et al. Analog performance and linearity analysis of a p-type group IV-IV SiGe TFET. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02141-0

Keywords

Navigation