Skip to main content
Log in

ANFIS-based impedance analysis of an infinite array of rectangular microstrip antennas

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We present the results of an efficient analysis–based on adaptive network fuzzy inference systems (ANFIS)–of the impedance an infinite array of rectangular microstrip antennas. In the proposed modeling approach, first, a number of input–output pairs (inputs include spacing between antennas, outputs include resonant frequency, quality factor, and input resistance) are computed from full-wave methods, and they are then used in the training process. An advantage of the proposed model in comparison with full-wave and approximate methods is that, after convergence of the training process, it bypasses the repeated use of complex computations for new inputs presented to it without any restriction. In addition, a comparison of the proposed model with those related to a single rectangular microstrip antenna shows considerable differences, especially for input resistance and quality factor, which is of importance in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Sidney, P.A.: Adaptive arrays. IEEE Trans. Antennas Propagat. 24(5), 587–598 (1976)

    Google Scholar 

  2. Pozar, D.M., et al.: Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds. IEEE Trans. Antennas Propagat. 32(10), 1101–1107 (1984)

    Article  ADS  Google Scholar 

  3. Kang, H. Lee., Sharad R. Laxpati.: FDTD analysis of an infinite array of microstrip patches. In: IEEE Antennas and Propagation Society International Symposium, pp. 21–26, (July 1996)

  4. Pues, H., Van de Capelle, A.: Accurate transmission-line model for the rectangular microstrip antenna. IEE Pro. 131(6), 334–340 (1984)

    Google Scholar 

  5. Vanlil, E.H., Van de Capelle, A.R.: Transmission line model for mutual coupling between microstrip antennas. IEEE Trans. Electromag. Compat. 32(4), 816–821 (1984)

    Google Scholar 

  6. Bahl, I. J., Bhartia, P.: Microstrip Antennas, 17. K. F. Lee and W. Chen, Advances in Microstrip Artech House, Dedham, MA, 1980.

  7. Akdagli, A., Guney, K.: Effective patch radius expression obtained using a genetic algorithm for the resonant frequency of electrically thin and thick circular microstrip antennas. Proc. Inst. Elect. Eng. 147, 156–159 (2000)

    Google Scholar 

  8. Karaboga, D., Guney, K., Kaplan, A., Akdagli, A.: A new effective side length expression obtained using a modified tabu search algorithm for the resonant frequency of a triangular microstrip antenna. Int. J. RF Microw. Millim. Wave Comput. Aided Eng. 8, 4–10 (1998)

    Article  Google Scholar 

  9. Liu, Q., Chew, W.C.: Curve-fitting formulas for fast determination of accurate resonant frequency of circular microstrip patches. Proc. Inst. Elect. Eng. 135, 289–292 (1988)

    Google Scholar 

  10. Kara, M.: Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates. Microwave Opt. Technol. Lett. 12, 131–136 (1996)

    Article  Google Scholar 

  11. Ozer, S., Guney, K., Kaplan, A.: Computation of the resonant frequency of electrically thin and thick rectangular microstrip antennas with the use of fuzzy inference systems. Int. J. RF Microw. Millim. Wave Comput. Aided Eng. 10, 108–119 (2000)

    Article  Google Scholar 

  12. Turker, N., Gunes, F., Yildirim, T.: Artificial neural design of microstrip antennas. Turk. J. Elec. Eng. 14(3), 445–453 (2006)

    Google Scholar 

  13. Güney, K., Erler, M., Sagiroglu, S.: Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas. Electromagnetics 20(5), 387–400 (2000)

    Article  Google Scholar 

  14. Karaboga, D., Güney, K., Sagiroglu, S., Erler, M.: Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas. IEE Proc. Microw. Antennas Propagat. 146(5), 155–159 (1999)

    Article  Google Scholar 

  15. Kalini, A., Sagiroglu, S., Sarikoc, F.: Parallel ant colony optimization algorithm based neural method for determining resonant frequencies of various microstrip antennas. Electromagnetics 30(5), 463–481 (2010)

    Article  Google Scholar 

  16. Sinan Gultekin, S., Guney, K., Sagiroglu, S.: Neural networks for the calculation of bandwidth of rectangular microstrip antennas. J. Adv. Geosp. Sci. Technol. (JAGST) 15(1), 147–160 (2013)

    Google Scholar 

  17. Kayabasi, A.: Analysis and synthesis of equilateral triangular ring microstrip antenna using support vector machine. ACES J. 33, 6 (2018)

    Google Scholar 

  18. Angiulli, G., Versaci, M.: Resonant frequency evaluation of microstrip antennas using a neural-fuzzy approach. IEEE Trans. Antennas Propagat. 39, 3 (2003)

    Google Scholar 

  19. Guney, K., Sarikaya, N.: A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas. IEEE Trans. Antennas Propagat 55(3), 659–668 (2007)

    Article  ADS  Google Scholar 

  20. Rop, K.V., Konditi, D.B.O., Ouma, H.A., Musyoki, S.M.: Parameter optimization in design of a rectangular microstrip patch antenna using adaptive neuro-fuzzy inference system technique. Int. J. Techn. Phys. Probl. Eng. (IJTPE) 4(3), 16–23 (2012)

    Google Scholar 

  21. Rop, K.V., Konditi, D.B.O., Ouma, H.A., Musyoki, S.M.: Application of adaptive neuro-fuzzy inference system technique in design of rectangular microstrip patch antenna. J. Adv. Geospat. Sci. Technol. (JAGST) 15(1), 147–160 (2013)

    Google Scholar 

  22. Jacobs, J.P.: Efficient resonant frequency modeling for dual-Band microstrip antennas by Gaussian process regression. IEEE Antennas Wirel. Propagat. Lett. 14, 337–341 (2015)

    Article  ADS  Google Scholar 

  23. Sri Rama Krishna, K.: Bandwidth and mutual coupling analysis of a circular microstrip MIMO antenna using artificial neural networks. Arab. J. Sci. Eng. 41, 3231–3238 (2016)

    Article  Google Scholar 

  24. Sotyohadi*, Riken Afandi, and Dony Rachmad Hadi, “Design and Bandwidth optimization on triangle patch microstrip antenna for WLAN 2.4 GHz “, In:3rd International Conference on Electrical Systems, Technology and Information (ICESTI 2017).

  25. Jang, J.-S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  26. Ostadzadeh, S.R.: Application of ANFIS technique for wide-band modeling of overvoltage of single-conductor overhead lines with arrester above dispersive and two-layer soils. AUT J. Elec. Eng. 55(2), 241–254 (2023)

    Google Scholar 

  27. Aghajani, V., Sajjadi, S.S., Ostadzadeh, S.R.: Design of grounding vertical rods buried in complex soils based on adaptive network-based fuzzy inference systems. J. Commun. Eng. 7, 2 (2018)

    Google Scholar 

  28. Christodoulous, C., Georgiopoulos, M.: Applications of Neural Networks in Electromagnetics. Artech House, Boston, MA (2001)

    Google Scholar 

  29. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern.. SMC-15, 1 (1985).

  30. Jackson, D.R., Alexopoulo, N.G.: Simple approximate formulas for input resistance, bandwidth, and efficiency of a resonant rectangular patch. IEEE Trans. Antennas Propagat. 39(3), 407–410 (1991)

    Article  ADS  Google Scholar 

  31. Bahrami, A., Ostadzadeh, S.R.: Back scattering from single, finite, and infinite array of nonlinear antennas based on intelligent water drops. Int. J. Comput. Math. Electr. Electron. Eng. 38, 2040–2056 (2019)

    Article  Google Scholar 

  32. Samiian, H., Ostadzadeh, S.R., Mirzaie, A.: Application of intelligent water drops in transient analysis of single conductor overhead lines terminated to grid-grounded arrester under direct lightning strikes. J. Commun. Eng. 5(1), 50–59 (2016)

    Google Scholar 

  33. Bahrami, A., Ostadzadeh, S.R.: Comprehensively efficient analysis of nonlinear wire scatterers considering lossy ground and multi-tone excitations. Appl. Comput. Electromagn. Soc. J. (ACES) 35(8), 878–886 (2020)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Reza Ostadzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, M.A., Ostadzadeh, S.R. ANFIS-based impedance analysis of an infinite array of rectangular microstrip antennas. J Comput Electron (2024). https://doi.org/10.1007/s10825-024-02140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10825-024-02140-1

Keywords

Navigation